Communication-Efficient Distributed Statistical Inference

被引:242
|
作者
Jordan, Michael I. [1 ]
Lee, Jason D. [2 ]
Yang, Yun [3 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA USA
[2] Stanford Univ, Inst Computat & Math Engn, Cupertino, CA USA
[3] Duke Univ, Stat Sci, Box 90251, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Communication efficiency; Distributed inference; Likelihood approximation;
D O I
10.1080/01621459.2018.1429274
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a communication-efficient surrogate likelihood (CSL) framework for solving distributed statistical inference problems. CSL provides a communication-efficient surrogate to the global likelihood that can be used for low-dimensional estimation, high-dimensional regularized estimation, and Bayesian inference. For low-dimensional estimation, CSL provably improves upon naive averaging schemes and facilitates the construction of confidence intervals. For high-dimensional regularized estimation, CSL leads to a minimax-optimal estimator with controlled communication cost. For Bayesian inference, CSL can be used to form a communication-efficient quasi-posterior distribution that converges to the true posterior. This quasi-posterior procedure significantly improves the computational efficiency of Markov chain Monte Carlo (MCMC) algorithms even in a nondistributed setting. We present both theoretical analysis and experiments to explore the properties of the CSL approximation. Supplementary materials for this article are available online.
引用
收藏
页码:668 / 681
页数:14
相关论文
共 50 条
  • [1] Heterogeneity-aware and communication-efficient distributed statistical inference
    Duan, Rui
    Ning, Yang
    Chen, Yong
    [J]. BIOMETRIKA, 2022, 109 (01) : 67 - 83
  • [2] Communication-efficient distributed statistical inference on zero-inflated Poisson models
    Wan, Ran
    Bai, Yang
    [J]. STATISTICAL THEORY AND RELATED FIELDS, 2024, 8 (02) : 81 - 106
  • [3] Communication-Efficient Distributed Multiple Testing for Large-Scale Inference
    Pournaderi, Mehrdad
    Xiang, Yu
    [J]. arXiv, 2022,
  • [4] PROVABLY COMMUNICATION-EFFICIENT ASYNCHRONOUS DISTRIBUTED INFERENCE FOR CONVEX AND NONCONVEX PROBLEMS
    Ren, Jineng
    Haupt, Jarvis
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 638 - 642
  • [5] Communication-efficient and Byzantine-robust distributed learning with statistical guarantee
    Zhou, Xingcai
    Chang, Le
    Xu, Pengfei
    Lv, Shaogao
    [J]. PATTERN RECOGNITION, 2023, 137
  • [6] A Provably Communication-Efficient Asynchronous Distributed Inference Method for Convex and Nonconvex Problems
    Ren, Jineng
    Haupt, Jarvis
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 3325 - 3340
  • [7] Communication-Efficient Algorithms for Statistical Optimization
    Zhang, Yuchen
    Duchi, John C.
    Wainwright, Martin J.
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 6792 - 6792
  • [8] FAST AND COMMUNICATION-EFFICIENT DISTRIBUTED PCA
    Gang, Arpita
    Raja, Haroon
    Bajwa, Waheed U.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7450 - 7454
  • [9] Communication-Efficient Distributed Eigenspace Estimation
    Charisopoulos, Vasileios
    Benson, Austin R.
    Damle, Anil
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (04): : 1067 - 1092
  • [10] Communication-efficient distributed oblivious transfer
    Beimel, Amos
    Chee, Yeow Meng
    Wang, Huaxiong
    Zhang, Liang Feng
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (04) : 1142 - 1157