Algebraic multigrid and algebraic multilevel methods: a theoretical comparison

被引:32
|
作者
Notay, Y [1 ]
机构
[1] Univ Libre Bruxelles, Serv Metrol Nucl, B-1050 Brussels, Belgium
关键词
algebraic multigrid; multilevel; CBS constant; preconditioning;
D O I
10.1002/nla.435
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider algebraic methods of the two-level type for the iterative solution of large sparse linear systems. We assume that a fine/coarse partitioning and an algebraic interpolation have been defined in one way or another, and review different schemes that may be built with these ingredients. This includes algebraic multigrid (AMG) schemes, two-level approximate block factorizations, and several methods that exploit generalized hierarchical bases. We develop their theoretical analysis in a unified way, gathering some known results, rewriting some other and stating some new. This includes lower bounds, that is, we do not only investigate sufficient conditions of convergence, but also look at necessary conditions. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:419 / 451
页数:33
相关论文
共 50 条
  • [1] Algebraic multigrid methods
    Xu, Jinchao
    Zikatanov, Ludmil
    [J]. ACTA NUMERICA, 2017, 26 : 591 - 721
  • [2] ALGEBRAIC SPECTRAL MULTIGRID METHODS
    HEINRICHS, W
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 80 (1-3) : 281 - 286
  • [3] AN ALGEBRAIC INTERPRETATION OF MULTIGRID METHODS
    MCCORMICK, SF
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (03) : 548 - 560
  • [4] A comparison of algebraic multigrid and geometric immersed interface multigrid methods for interface problems
    Adams, L
    Chartier, TP
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03): : 762 - 784
  • [5] ALGEBRAIC MULTIGRID DOMAIN DECOMPOSITION METHODS
    KUZNETSOV, YA
    [J]. SOVIET JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1989, 4 (05): : 351 - 379
  • [6] Algebraic multigrid methods for Laplacians of graphs
    Bolten, Matthias
    Friedhoff, Stephanie
    Frommer, Andreas
    Heming, Matthias
    Kahl, Karsten
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (11) : 2225 - 2243
  • [7] ALGEBRAIC MULTILEVEL KRYLOV METHODS
    Erlangga, Yogi A.
    Nabben, Reinhard
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05): : 3417 - 3437
  • [8] On the algebraic multilevel preconditioning methods
    Aksel'son, O.
    [J]. Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1995, (03): : 4 - 19
  • [9] Efficient Algebraic Multigrid Methods for Multilevel Overlapping Coclustering of User-Item Relationships
    Xu, Haifeng
    Kashef, Rasha F.
    De Sterck, Hans
    Sanders, Geoffrey
    [J]. INFORMS JOURNAL ON COMPUTING, 2022, 34 (03) : 1587 - 1605
  • [10] Generalization of algebraic multiscale to algebraic multigrid
    Silvia Ehrmann
    Sebastian Gries
    Marc Alexander Schweitzer
    [J]. Computational Geosciences, 2020, 24 : 683 - 696