Multi-domain integrative Swin transformer network for sparse-view tomographic reconstruction

被引:47
|
作者
Pan, Jiayi [1 ]
Zhang, Heye [1 ]
Wu, Weifei [2 ]
Gao, Zhifan [1 ]
Wu, Weiwen [1 ]
机构
[1] Sun Yat Sen Univ, Sch Biomed Engn, Shenzhen, Guangdong, Peoples R China
[2] China Three Gorges Univ, Peoples Hosp Yichang 1, Peoples Hosp China, Dept Orthoped, Yichang, Hubei, Peoples R China
来源
PATTERNS | 2022年 / 3卷 / 06期
基金
中国国家自然科学基金;
关键词
IMAGE-RECONSTRUCTION; INVERSE PROBLEMS; NEURAL-NETWORK; ALGORITHM;
D O I
10.1016/j.patter.2022.100498
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decreasing projection views to a lower X-ray radiation dose usually leads to severe streak artifacts. To improve image quality from sparse-view data, a multi-domain integrative Swin transformer network (MIST-net) was developed and is reported in this article. First, MIST-net incorporated lavish domain features from data, residual data, image, and residual image using flexible network architectures, where a residual data and residual image sub-network was considered as a data consistency module to eliminate interpolation and reconstruction errors. Second, a trainable edge enhancement filter was incorporated to detect and protect image edges. Third, a high-quality reconstruction Swin transformer (i.e., Recformer) was designed to capture image global features. The experimental results on numerical and real cardiac clinical datasets with 48 views demonstrated that our proposed MIST-net provided better image quality with more small features and sharp edges than other competitors.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] TMAA-net: tensor-domain multi-planal anti-aliasing network for sparse-view CT image reconstruction
    Yun, Sungho
    Lee, Seoyoung
    Choi, Da-in
    Lee, Taewon
    Cho, Seungryong
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (22):
  • [32] Hierarchical convolutional network for sparse-view X-ray CT reconstruction
    Wu, Ziling
    Yang, Ting
    Li, Ling
    Zhu, Yunhui
    COMPUTATIONAL IMAGING IV, 2019, 10990
  • [33] SPARSE-VIEW CT RECONSTRUCTION VIA CONVOLUTIONAL SPARSE CODING
    Bao, Peng
    Xia, Wenjun
    Yang, Kang
    Zhou, Jiliu
    Zhang, Yi
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1446 - 1449
  • [34] VVBPNet: Deep learning model in view-by-view backprojection (VVBP) domain for sparse-view CBCT reconstruction
    Zhao, Xuzhi
    Du, Yi
    Peng, Yahui
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 102
  • [35] Neighborhood transformer for sparse-view X-ray 3D foot reconstruction
    Wang, Wei
    An, Li
    Zhou, Mingquan
    Han, Gengyin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [36] Hierarchical decomposed dual-domain deep learning for sparse-view CT reconstruction
    Han, Yoseob
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (08):
  • [37] Learned Alternating Minimization Algorithm for Dual-Domain Sparse-View CT Reconstruction
    Ding, Chi
    Zhang, Qingchao
    Wang, Ge
    Ye, Xiaojing
    Chen, Yunmei
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT X, 2023, 14229 : 173 - 183
  • [38] Sparse-view cone beam CT reconstruction using dual CNNs in projection domain and image domain
    Chao, Lianying
    Wang, Zhiwei
    Zhang, Haobo
    Xu, Wenting
    Zhang, Peng
    Li, Qiang
    NEUROCOMPUTING, 2022, 493 : 536 - 547
  • [39] COMPARISON OF SPARSE-VIEW CT IMAGE RECONSTRUCTION ALGORITHMS
    Zhang, Shu
    Xia, Youshen
    Zou, Changzhong
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, : 385 - 390
  • [40] Sparse-view reconstruction of dynamic processes by neutron tomography
    Wang, Hu
    Kaestner, Anders
    Zou, Yubin
    Lu, Yuanrong
    Guo, Zhiyu
    NEUTRON IMAGING FOR APPLICATIONS IN INDUSTRY AND SCIENCE, 2017, 88 : 290 - 298