Multi-domain integrative Swin transformer network for sparse-view tomographic reconstruction

被引:47
|
作者
Pan, Jiayi [1 ]
Zhang, Heye [1 ]
Wu, Weifei [2 ]
Gao, Zhifan [1 ]
Wu, Weiwen [1 ]
机构
[1] Sun Yat Sen Univ, Sch Biomed Engn, Shenzhen, Guangdong, Peoples R China
[2] China Three Gorges Univ, Peoples Hosp Yichang 1, Peoples Hosp China, Dept Orthoped, Yichang, Hubei, Peoples R China
来源
PATTERNS | 2022年 / 3卷 / 06期
基金
中国国家自然科学基金;
关键词
IMAGE-RECONSTRUCTION; INVERSE PROBLEMS; NEURAL-NETWORK; ALGORITHM;
D O I
10.1016/j.patter.2022.100498
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decreasing projection views to a lower X-ray radiation dose usually leads to severe streak artifacts. To improve image quality from sparse-view data, a multi-domain integrative Swin transformer network (MIST-net) was developed and is reported in this article. First, MIST-net incorporated lavish domain features from data, residual data, image, and residual image using flexible network architectures, where a residual data and residual image sub-network was considered as a data consistency module to eliminate interpolation and reconstruction errors. Second, a trainable edge enhancement filter was incorporated to detect and protect image edges. Third, a high-quality reconstruction Swin transformer (i.e., Recformer) was designed to capture image global features. The experimental results on numerical and real cardiac clinical datasets with 48 views demonstrated that our proposed MIST-net provided better image quality with more small features and sharp edges than other competitors.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Sparse-view CT reconstruction based on multi-level wavelet convolution neural network
    Lee, Minjae
    Kim, Hyemi
    Kim, Hee-Joung
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 80 : 352 - 362
  • [22] Sparse-View Tomographic Reconstruction Using Residual U-Net with Attention Gates
    Cheng, Chang-Chieh
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [23] DRONE: Dual-Domain Residual-based Optimization NEtwork for Sparse-View CT Reconstruction
    Wu, Weiwen
    Hu, Dianlin
    Niu, Chuang
    Yu, Hengyong
    Vardhanabhuti, Varut
    Wang, Ge
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (11) : 3002 - 3014
  • [24] Sparse-View CT Reconstruction Based on a Hybrid Domain Model with Multi-Level Wavelet Transform
    Bai, Jielin
    Liu, Yitong
    Yang, Hongwen
    SENSORS, 2022, 22 (09)
  • [25] Generalized iterative sparse-view CT reconstruction with deep neural network
    Su, Ting
    Sun, Xindong
    Deng, Xiaolei
    Zheng, Hairong
    Liang, Dong
    Ge, Yongshuai
    MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312
  • [26] Optimization of sparse-view CT reconstruction based on convolutional neural network
    Lv, Liangliang
    Li, Chang
    Wei, Wenjing
    Sun, Shuyi
    Ren, Xiaoxuan
    Pan, Xiaodong
    Li, Gongping
    MEDICAL PHYSICS, 2025,
  • [27] Sparse-view CT reconstruction with improved GoogLeNet
    Xie, Shipeng
    Zhang, Pengcheng
    Luo, Limin
    Li, Haibo
    MEDICAL IMAGING 2018: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2018, 10578
  • [28] ADMM-TransNet: ADMM-Based Sparse-View CT Reconstruction Method Combining Convolution and Transformer Network
    Wang, Sukai
    Sun, Xueqin
    Li, Yu
    Wei, Zhiqing
    Guo, Lina
    Li, Yihong
    Chen, Ping
    Li, Xuan
    TOMOGRAPHY, 2025, 11 (03)
  • [29] Performance of sparse-view CT reconstruction with multi-directional gradient operators
    Hsieh, Chia-Jui
    Jin, Shih-Chun
    Chen, Jyh-Cheng
    Kuo, Chih-Wei
    Wang, Ruei-Teng
    Chu, Woei-Chyn
    PLOS ONE, 2019, 14 (01):
  • [30] DDPTransformer: Dual-Domain With Parallel Transformer Network for Sparse View CT Image Reconstruction
    Li, Runrui
    Li, Qing
    Wang, Hexi
    Li, Saize
    Zhao, Juanjuan
    Yan, Qiang
    Wang, Long
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2022, 8 : 1101 - 1116