Prediction of Channel Excess Attenuation for Satellite Communication Systems at Q-Band Using Artificial Neural Network

被引:24
|
作者
Bai, Lu [1 ]
Wang, Cheng-Xiang [2 ,3 ,4 ]
Xu, Qian [5 ]
Ventouras, Spiros [6 ]
Goussetis, George [4 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Shandong Prov Key Lab Wireless Commun Technol, Qingdao 266237, Shandong, Peoples R China
[2] Southeast Univ, Sch Informat Sci & Engn, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[3] Purple Mt Labs, Nanjing 211111, Jiangsu, Peoples R China
[4] Heriot Watt Univ, Sch Engn & Phys Sci, Inst Sensors Signals & Syst, Edinburgh EH14 4AS, Midlothian, Scotland
[5] Jilin Univ, Sch Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
[6] STFC Rutherford Appleton Lab, RAL Space, Oxford OX11 0QX, England
来源
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 国家重点研发计划;
关键词
Artificial neural network (ANN); channel excess attenuation; satellite communication systems; weather conditions;
D O I
10.1109/LAWP.2019.2932904
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes the use of an artificial neural network (ANN) for estimating the fading of a <italic>Q</italic>-band (39.402GHz) satellite channel exploiting the knowledge of its previous state, as well as the present weather conditions. The ANN is trained using weather data and propagation measurements at the <italic>Q</italic>-band obtained during a period of nine months by the Aldo Paraboni receivers of RAL Space, Chilbolton, Hampshire, U.K. Subsequently, the estimation obtained by the ANN is compared with actual propagation measurements on data obtained over a period of three months. Statistical analysis demonstrates an agreement between the ANN estimation and the measurement within a 1dB range with a probability exceeding 98.8. The significance of this letter lies with the opportunities it raises to deliver real-time fading estimations using low-cost weather sensors combined with feedback on the channel state from the return link, which can be used in the deployment of propagation impairment mitigation techniques.
引用
收藏
页码:2235 / 2239
页数:5
相关论文
共 50 条
  • [41] Prediction of rubber vulcanization using an artificial neural network
    Lubura, Jelena D.
    Kojic, Predrag
    Pavlicevic, Jelena
    Ikonic, Bojana
    Omorjan, Radovan
    Bera, Oskar
    [J]. HEMIJSKA INDUSTRIJA, 2021, 75 (05) : 277 - 283
  • [42] SRAF Printing Prediction Using Artificial Neural Network
    Kwon, Yonghwi
    Yang, Jinho
    Kim, Sungho
    Kim, CheolKyun
    Shin, Youngsoo
    [J]. OPTICAL MICROLITHOGRAPHY XXXIII, 2021, 11327
  • [43] Prediction of the plasma distribution using an artificial neural network
    李炜
    陈俊芳
    王腾
    [J]. Chinese Physics B, 2009, 18 (06) : 2441 - 2444
  • [44] POSTTRANSPLANT TUBERCULOSIS PREDICTION USING ARTIFICIAL NEURAL NETWORK
    Starostina, Anna
    Parabina, Elena
    Maslikova, Ulyana
    Tsygankov, Igor
    Yaremin, Boris
    [J]. TRANSPLANT INTERNATIONAL, 2019, 32 : 413 - 413
  • [45] Prediction of disturbances in the ionosphere by using the artificial neural network
    Liu, W
    Jiao, PN
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2001, 44 (01): : 24 - 30
  • [46] Prediction of extrusion pressure using an artificial neural network
    Li, YY
    Bridgwater, J
    [J]. POWDER TECHNOLOGY, 2000, 108 (01) : 65 - 73
  • [47] Prediction of Egg Production Using Artificial Neural Network
    Ghazanfari, S.
    Nobari, K.
    Tahmoorespur, M.
    [J]. IRANIAN JOURNAL OF APPLIED ANIMAL SCIENCE, 2011, 1 (01): : 11 - 16
  • [48] Using artificial neural network for reservoir eutrophication prediction
    Kuo, Jan-Tai
    Hsieh, Ming-Han
    Lung, Wu-Seng
    She, Nian
    [J]. ECOLOGICAL MODELLING, 2007, 200 (1-2) : 171 - 177
  • [49] Prediction of turbojet performance by using artificial neural network
    Mohammed, Mortda
    Taher, Maher K.
    Khudhair, Saleh
    [J]. MATERIALS TODAY-PROCEEDINGS, 2022, 60 : 1513 - 1522
  • [50] Prediction of hepatitis C using artificial neural network
    Jajoo, R
    Mital, D
    Haque, S
    Srinivasan, S
    [J]. METMBS'01: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, 2001, : 25 - 31