Investigation of Degradation of Electrical Properties after Thermal Oxidation of p-Type Cz-Silicon Wafers

被引:2
|
作者
Maoudj, M. [1 ,2 ]
Bouhafs, D. [1 ]
Bourouba, N. [2 ]
Khelifati, N. [1 ]
El Amrani, A. [1 ]
Boufnik, R. [1 ]
Ferhat, A. Hamida [2 ]
机构
[1] CRTSE, Technol Res Ctr Semicond Energet, 02,Bd Frantz Fanon BP 140 Alger 7 Merveilles, Algiers, Algeria
[2] Ferhat Abbas Univ, Fac Technol, Dept Elect, Setif, Algeria
关键词
SURFACE RECOMBINATION VELOCITY; MINORITY-CARRIERS; SOLAR-CELLS; PASSIVATION; TEMPERATURE; LIFETIME; IRON;
D O I
10.12693/APhysPolA.132.725
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study we conducted thermal oxidation of Czochralski p-type <100> silicon wafers. The oxidation was carried out at temperatures in the range of 850-1000 degrees C, in a gas mixture of N-2: O-2, in order to deposit a thin layer (10 nm) of thermal silicon dioxide (SiO2), generally used in the surface passivation of solar cells. The measurements of effective minority carriers lifetime tau(eff) using the quasi-steady-state photoconductance have shown degradation of different samples after oxidation process. The calculation of surface recombination velocity after the oxidation process at different temperatures, gave the same value of 40 cms(-1), showing a low surface recombination velocity and, therefore, a good surface passivation. Finally, a study based on sample illumination technique, allowed us to conclude that our samples are dominated by bulk Shockley-Read-Hall recombination, caused by Fe-related centers, thereby causing the degradation of the lifetime of minority carriers.
引用
收藏
页码:725 / 727
页数:3
相关论文
共 50 条
  • [21] Activation of electrical defects under Rapid Thermal Annealing in Cz-silicon for solar cells application
    Bouhafs, D.
    Khelifati, N.
    Kouhlane, Y.
    Kaddour, R. Si
    MATERIALS RESEARCH EXPRESS, 2019, 6 (05)
  • [22] The Investigation on the Texture Differences between P-type and N-type Crystalline Silicon Wafers
    Wu, Wenjuan
    Xu, Jin
    Xi, Xi
    Chen, Liping
    Gao, Feng
    Wang, Zhengxin
    Yu, Zhenqiu
    Lu, Qian
    Zhang, Song
    Zhu, Haidong
    Chen, Rulong
    Yang, Jian
    Ji, Jingjia
    Shi, Zhengrong
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012, : 2281 - 2283
  • [23] Effect of ultrasonic strain on p-type silicon wafers
    Tsuruta, Kazuki
    Mito, Masaki
    Nagano, Takuma
    Katamune, Yuki
    Yoshitake, Tsuyoshi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (07)
  • [24] ELECTRICAL PROPERTIES OF GAMMA-IRRADIATED P-TYPE SILICON
    CHENG, LJ
    LORI, J
    PHYSICAL REVIEW B, 1970, 1 (04): : 1558 - &
  • [25] ELECTRICAL-PROPERTIES OF THERMAL OXIDE GROWN USING DRY OXIDATION ON P-TYPE 6H-SILICON CARBIDE
    ALOK, D
    MCLARTY, PK
    BALIGA, BJ
    APPLIED PHYSICS LETTERS, 1994, 65 (17) : 2177 - 2178
  • [26] Detailed Investigation of Surface Passivation Methods for Lifetime Measurements on P-Type Silicon Wafers
    Pollock, Kevin L.
    Junge, Johannes
    Hahn, Giso
    IEEE JOURNAL OF PHOTOVOLTAICS, 2012, 2 (01): : 1 - 6
  • [27] INTRINSIC GETTERING OF CR IMPURITIES IN P-TYPE CZ SILICON
    ADEGBOYEGA, GA
    POGGI, A
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1990, 121 (01): : 181 - 185
  • [28] Effect of Rapid Thermal Processing on Light-Induced Degradation of Carrier Lifetime in Czochralski p-Type Silicon Bare Wafers
    Kouhlane, Y.
    Bouhafs, D.
    Khelifati, N.
    Belhousse, S.
    Menari, H.
    Guenda, A.
    Khelfane, A.
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (11) : 5621 - 5625
  • [29] Effect of Rapid Thermal Processing on Light-Induced Degradation of Carrier Lifetime in Czochralski p-Type Silicon Bare Wafers
    Y. Kouhlane
    D. Bouhafs
    N. Khelifati
    S. Belhousse
    H. Menari
    A. Guenda
    A. Khelfane
    Journal of Electronic Materials, 2016, 45 : 5621 - 5625
  • [30] Investigation of Silicon Wafers Thermal Degradation by Photoluminescence Decay Measurements
    Kudryashov, Dmitry
    Gudovskikh, Alexander
    Uvarov, Alexander
    Nikitina, Ekaterina
    14TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-14), 2018, 2012