Deep convolutional neural network for detection of pathological speech

被引:9
|
作者
Vavrek, Lukas [1 ]
Hires, Mate [1 ]
Kumar, Dinesh [2 ]
Drotar, Peter [1 ]
机构
[1] Tech Univ Kosice, Dept Comp & Informat, Fac Elect Engn & Informat, Kosice, Slovakia
[2] RMIT Univ, Sch Engn, Melbourne, Vic, Australia
关键词
convolutional neural network; deep learning; pathological voice detection; transfer learning;
D O I
10.1109/SAMI50585.2021.9378656
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes the investigation of the use of the deep neural networks (DNN) for the detection of pathological speech. The state-of-the-art VGG16 convolutional neural network based transfer learning was the basis of this work and different approaches were trialed. We tested the different architectures using the Saarbrucken Voice database (SVD). To overcome limitations due to language and education, the SVD was limited to /a/, /i/ and /u/ vowel subsets with sustained natural pitch. The scope of this study was only diseases that classify as organic dysphonia. We utilized multiple simple networks trained separately on different vowel subsets and combined them as a single model ensemble. It was found that model ensemble achieved an accuracy on pathological speech detection of 82%. Thus, our results show that pre-trained convolutional neural networks can be used for transfer learning when input is the spectrogram representation of the voice signal. This is significant because it overcomes the need for very large data size that is required to train DNN, and is suitable for computerized analysis of the speech without limitation of the language skills of the patients.
引用
收藏
页码:245 / 249
页数:5
相关论文
共 50 条
  • [41] A Deep Convolutional Neural Network Based Framework for Pneumonia Detection
    Jamil, Sonain
    Abbas, Muhammad Sohail
    Fawad
    Zia, Muhammad Faisal
    Rahman, Muhib Ur
    2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2), 2021,
  • [42] A deep convolutional neural network for detection of rail surface defect
    Yuan, Hao
    Chen, Hao
    Liu, ShiWang
    Lin, Jun
    Luo, Xiao
    2019 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2019,
  • [43] Intrusion detection method based on a deep convolutional neural network
    Zhang S.
    Xie X.
    Xu Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2019, 59 (01): : 44 - 52
  • [44] Breast Cancer Detection using Deep Convolutional Neural Network
    Mechria, Hana
    Gouider, Mohamed Salah
    Hassine, Khaled
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 655 - 660
  • [45] Detection of bars in galaxies using a deep convolutional neural network
    Abraham, Sheelu
    Aniyan, A. K.
    Kembhavi, Ajit K.
    Philip, N. S.
    Vaghmare, Kaustubh
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 477 (01) : 894 - 903
  • [46] Deep Structured Convolutional Neural Network for Tomato Diseases Detection
    Suryawati, Endang
    Sustika, Rika
    Yuwana, R. Sandra
    Subekti, Agus
    Pardede, Hilman F.
    2018 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2018, : 385 - 390
  • [47] CATARACT DETECTION AND GRADING BASED ON DEEP CONVOLUTIONAL NEURAL NETWORK
    Zhang, Hongyan
    Niu, Kai
    Xiong, Yanmin
    Yang, Weihua
    He, Zhiqiang
    Song, Hongxin
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [48] Smart Vessel Detection using Deep Convolutional Neural Network
    Joseph, Iwin Thanakumar S.
    Sasikala, J.
    Juliet, Sujitha D.
    Raj, Benson Edwin S.
    2018 FIFTH HCT INFORMATION TECHNOLOGY TRENDS (ITT): EMERGING TECHNOLOGIES FOR ARTIFICIAL INTELLIGENCE, 2018, : 28 - 32
  • [49] Learn a Deep Convolutional Neural Network for Image Smoke Detection
    Liu, Maoshen
    Gu, Ke
    Wu, Li
    Xu, Xin
    Qiao, Junfei
    DIGITAL TV AND MULTIMEDIA COMMUNICATION, 2019, 1009 : 217 - 226
  • [50] Fabric Defect Detection Using Deep Convolutional Neural Network
    Biradar, Maheshwari S.
    Shiparamatti, B.G.
    Patil, P.M.
    Optical Memory and Neural Networks (Information Optics), 2021, 30 (03): : 250 - 256