Learn a Deep Convolutional Neural Network for Image Smoke Detection

被引:0
|
作者
Liu, Maoshen [1 ,2 ]
Gu, Ke [1 ,2 ]
Wu, Li [1 ,2 ]
Xu, Xin [1 ,2 ]
Qiao, Junfei [1 ,2 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Deep learning; Deep neural networks; Smoke detection; Image classification;
D O I
10.1007/978-981-13-8138-6_18
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Smoke detection is the key to industrial safety warnings and fire prevention, such as flare smoke detection in chemical plants and forest fire warning. Due to the complex changes in smoke color, texture and shape, it is difficult to identify the smoke in the image. Recently, more and more scholars have paid attention to the research of smoke detection. In order to solve the above problems, we propose a convolutional neural network structure designed for smoke characteristics. The characteristics of smoke are only complicated in simple features, and no deep semantic structure information needs to be extracted. Therefore, there is no performance improvement in deepening the depth of the network. We use a 10-layer convolutional neural network to hop the features of the first layer of convolution extraction to the back layer to increase the network's ability to extract simple features. The experimental results show that our convolutional neural network model has fewer parameters than the existing deep learning method, and the accuracy rate in the smoke database is optimal.
引用
收藏
页码:217 / 226
页数:10
相关论文
共 50 条
  • [1] A Deep Normalization and Convolutional Neural Network for Image Smoke Detection
    Yin, Zhijian
    Wan, Boyang
    Yuan, Feiniu
    Xia, Xue
    Shi, Jinting
    IEEE ACCESS, 2017, 5 : 18429 - 18438
  • [2] Deep Convolutional Generative Adversarial Network and Convolutional Neural Network for Smoke Detection
    Yin, Hang
    Wei, Yurong
    Liu, Hedan
    Liu, Shuangyin
    Liu, Chuanyun
    Gao, Yacui
    COMPLEXITY, 2020, 2020
  • [3] Deep Convolutional Generative Adversarial Network and Convolutional Neural Network for Smoke Detection
    Yin, Hang
    Wei, Yurong
    Liu, Hedan
    Liu, Shuangyin
    Liu, Chuanyun
    Gao, Yacui
    Liu, Shuangyin (hdlsyxlq@126.com), 1600, Hindawi Limited (2020):
  • [4] A Deep Separable Convolutional Neural Network for Multiscale Image-Based Smoke Detection
    Yinuo Huo
    Qixing Zhang
    Yang Jia
    Dongcai Liu
    Jinfu Guan
    Gaohua Lin
    Yongming Zhang
    Fire Technology, 2022, 58 : 1445 - 1468
  • [5] A Deep Separable Convolutional Neural Network for Multiscale Image-Based Smoke Detection
    Huo, Yinuo
    Zhang, Qixing
    Jia, Yang
    Liu, Dongcai
    Guan, Jinfu
    Lin, Gaohua
    Zhang, Yongming
    FIRE TECHNOLOGY, 2022, 58 (03) : 1445 - 1468
  • [6] An Integrated Smoke Detection Method based on Convolutional Neural Network and Image Processing
    Ma, Pei
    Yu, Feng
    Zhou, Changlong
    Jiang, Minghua
    2020 IEEE 8TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2020, : 32 - 36
  • [7] Deep convolutional neural network for glaucoma detection based on image classification
    Gobinath, C.
    Gopinath, M. P.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 1957 - 1971
  • [8] Smoke Detection Based on Deep Convolutional Neural Networks
    Tao, Chongyuan
    Zhang, Jian
    Wang, Pan
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII), 2016, : 150 - 153
  • [9] Dark convolutional neural network for forest smoke detection and localization based on single image
    Na Lu
    Soft Computing, 2022, 26 : 8647 - 8659
  • [10] Dark convolutional neural network for forest smoke detection and localization based on single image
    Lu, Na
    SOFT COMPUTING, 2022, 26 (17) : 8647 - 8659