Learn a Deep Convolutional Neural Network for Image Smoke Detection

被引:0
|
作者
Liu, Maoshen [1 ,2 ]
Gu, Ke [1 ,2 ]
Wu, Li [1 ,2 ]
Xu, Xin [1 ,2 ]
Qiao, Junfei [1 ,2 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Beijing Key Lab Computat Intelligence & Intellige, Beijing, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Deep learning; Deep neural networks; Smoke detection; Image classification;
D O I
10.1007/978-981-13-8138-6_18
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Smoke detection is the key to industrial safety warnings and fire prevention, such as flare smoke detection in chemical plants and forest fire warning. Due to the complex changes in smoke color, texture and shape, it is difficult to identify the smoke in the image. Recently, more and more scholars have paid attention to the research of smoke detection. In order to solve the above problems, we propose a convolutional neural network structure designed for smoke characteristics. The characteristics of smoke are only complicated in simple features, and no deep semantic structure information needs to be extracted. Therefore, there is no performance improvement in deepening the depth of the network. We use a 10-layer convolutional neural network to hop the features of the first layer of convolution extraction to the back layer to increase the network's ability to extract simple features. The experimental results show that our convolutional neural network model has fewer parameters than the existing deep learning method, and the accuracy rate in the smoke database is optimal.
引用
收藏
页码:217 / 226
页数:10
相关论文
共 50 条
  • [31] Detection of Potholes Using a Deep Convolutional Neural Network
    Suong, Lim Kuoy
    Jangwoo, Kwon
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2018, 24 (09) : 1244 - 1257
  • [32] A sequential convolutional neural network for image forgery detection
    Kaur, Simranjot
    Chopra, Sumit
    Nayyar, Anchal
    Sharma, Rajesh
    Singh, Gagandeep
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 41311 - 41325
  • [33] Acupoint Detection Based on Deep Convolutional Neural Network
    Sun, Lingyao
    Sun, Shiying
    Fu, Yuanbo
    Zhao, Xiaoguang
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7418 - 7422
  • [34] Spacecraft Detection Based on Deep Convolutional Neural Network
    Yan, Zhenguo
    Song, Xin
    Zhong, Hanyang
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2018, : 148 - 153
  • [35] A deep convolutional neural network for efficient microglia detection
    Ilida Suleymanova
    Dmitrii Bychkov
    Jaakko Kopra
    Scientific Reports, 13 (1)
  • [36] A Deep Convolutional Neural Network for Food Detection and Recognition
    Subhi, Mohammed A.
    Ali, Sawal Md.
    2018 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2018, : 284 - 287
  • [37] Deep convolutional neural network for detection of pathological speech
    Vavrek, Lukas
    Hires, Mate
    Kumar, Dinesh
    Drotar, Peter
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 245 - 249
  • [38] A deep convolutional neural network approach for astrocyte detection
    Suleymanova, Ilida
    Balassa, Tamas
    Tripathi, Sushil
    Molnar, Csaba
    Saarma, Mart
    Sidorova, Yulia
    Horvath, Peter
    SCIENTIFIC REPORTS, 2018, 8
  • [39] Image Forgery Detection Based on the Convolutional Neural Network
    Feng Guorui
    Wu Jian
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 266 - 270
  • [40] A sequential convolutional neural network for image forgery detection
    Simranjot Kaur
    Sumit Chopra
    Anchal Nayyar
    Rajesh Sharma
    Gagandeep Singh
    Multimedia Tools and Applications, 2024, 83 : 41311 - 41325