Nanostructured complex oxides as a route towards thermal behavior in artificial spin ice systems

被引:10
|
作者
Chopdekar, R. V. [1 ]
Li, B. [1 ]
Wynn, T. A. [1 ]
Lee, M. S. [1 ]
Jia, Y. [1 ]
Liu, Z. Q. [2 ,4 ]
Biegalski, M. D. [2 ]
Retterer, S. T. [2 ]
Young, A. T. [3 ]
Scholl, A. [3 ]
Takamura, Y. [1 ]
机构
[1] Univ Calif Davis, Dept Mat Sci & Engn, One Shields Ave, Davis, CA 95616 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[4] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
来源
PHYSICAL REVIEW MATERIALS | 2017年 / 1卷 / 02期
基金
美国国家科学基金会;
关键词
ISLANDS;
D O I
10.1103/PhysRevMaterials.1.024401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have used soft x-ray photoemission electron microscopy to image the magnetization of single-domain La0.7Sr0.3MnO3 nanoislands arranged in geometrically frustrated configurations such as square ice and kagome ice geometries. Upon thermal randomization, ensembles of nanoislands with strong interislandmagnetic coupling relax towards low-energy configurations. Statistical analysis shows that the likelihood of ensembles falling into low-energy configurations depends strongly on the annealing temperature. Annealing to just below the Curie temperature of the ferromagnetic film (T-C = 338 K) allows for a much greater probability of achieving low-energy configurations as compared to annealing above the Curie temperature. At this thermally active temperature of 325 K, the ensemble of ferromagnetic nanoislands explore their energy landscape over time and eventually transition to lower energy states as compared to the frozen-in configurations obtained upon cooling from above the Curie temperature. Thus, this materials system allows for a facile method to systematically study thermal evolution of artificial spin ice arrays of nanoislands at temperatures modestly above room temperature.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Scaling Behavior of Complex Low-dimensional Spin Systems
    Shlyakhtich, Maria A.
    Egorina, Anastasia S.
    Drovorub, Egor, V
    Prudnikov, Vladimir V.
    Prudnikov, Pavel, V
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2023, 16 (06): : 830 - 837
  • [22] Tuning magnon spectra via interlayer coupling in pseudo-3D nanostructured artificial spin ice arrays
    de Rojas, Julius
    Atkinson, Del
    Adeyeye, Adekunle O.
    APPLIED PHYSICS LETTERS, 2023, 123 (23)
  • [23] Long-range Coulomb interactions and nonhydrodynamic behavior in thermal quenches in spin ice
    Hart, Oliver
    Haroche, Marianne
    Castelnovo, Claudio
    PHYSICAL REVIEW B, 2019, 100 (18)
  • [24] A SURVEY: TOWARDS UNDERSTANDING EMERGENT BEHAVIOR IN COMPLEX ENGINEERED SYSTEMS
    Soria Zurita, Nicolas F.
    Tumer, Irem Y.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 7, 2017,
  • [25] Application of artificial neural networks in predicting the performance of ice thermal energy storage systems
    Odufuwa, O. Y.
    Tartibu, L. K.
    Kusakana, K.
    Hohne, P. A.
    Numbi, B. P.
    JOURNAL OF ENERGY STORAGE, 2024, 95
  • [26] Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics
    Pohlit, Merlin
    Porrati, Fabrizio
    Huth, Michael
    Ohno, Yuzo
    Ohno, Hideo
    Mueller, Jens
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (17)
  • [27] Temperature in magnetic systems: Evolution towards thermal equilibrium by spin dynamics simulation
    Gutierrez, Gonzalo
    Davis, Sergio
    Esparza, Carlos
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 591
  • [28] Excitation of spin waves in the presence of magnetic charges and monopole polarons in finite-size square artificial spin ice systems
    Arora, Nimisha
    Das, Pintu
    PHYSICAL REVIEW B, 2022, 106 (18)
  • [29] Searching for the ground state of complex spin-ice systems using deep learning techniques
    H. Y. Kwon
    H. G. Yoon
    S. M. Park
    D. B. Lee
    D. Shi
    Y. Z. Wu
    J. W. Choi
    C. Won
    Scientific Reports, 12
  • [30] Searching for the ground state of complex spin-ice systems using deep learning techniques
    Kwon, H. Y.
    Yoon, H. G.
    Park, S. M.
    Lee, D. B.
    Shi, D.
    Wu, Y. Z.
    Choi, J. W.
    Won, C.
    SCIENTIFIC REPORTS, 2022, 12 (01)