Nanostructured complex oxides as a route towards thermal behavior in artificial spin ice systems

被引:10
|
作者
Chopdekar, R. V. [1 ]
Li, B. [1 ]
Wynn, T. A. [1 ]
Lee, M. S. [1 ]
Jia, Y. [1 ]
Liu, Z. Q. [2 ,4 ]
Biegalski, M. D. [2 ]
Retterer, S. T. [2 ]
Young, A. T. [3 ]
Scholl, A. [3 ]
Takamura, Y. [1 ]
机构
[1] Univ Calif Davis, Dept Mat Sci & Engn, One Shields Ave, Davis, CA 95616 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[4] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
来源
PHYSICAL REVIEW MATERIALS | 2017年 / 1卷 / 02期
基金
美国国家科学基金会;
关键词
ISLANDS;
D O I
10.1103/PhysRevMaterials.1.024401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have used soft x-ray photoemission electron microscopy to image the magnetization of single-domain La0.7Sr0.3MnO3 nanoislands arranged in geometrically frustrated configurations such as square ice and kagome ice geometries. Upon thermal randomization, ensembles of nanoislands with strong interislandmagnetic coupling relax towards low-energy configurations. Statistical analysis shows that the likelihood of ensembles falling into low-energy configurations depends strongly on the annealing temperature. Annealing to just below the Curie temperature of the ferromagnetic film (T-C = 338 K) allows for a much greater probability of achieving low-energy configurations as compared to annealing above the Curie temperature. At this thermally active temperature of 325 K, the ensemble of ferromagnetic nanoislands explore their energy landscape over time and eventually transition to lower energy states as compared to the frozen-in configurations obtained upon cooling from above the Curie temperature. Thus, this materials system allows for a facile method to systematically study thermal evolution of artificial spin ice arrays of nanoislands at temperatures modestly above room temperature.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Towards magnetic monopole interaction measurement in artificial spin ice systems
    Rodrigues, J. H.
    Mol, L. A. S.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 458 : 327 - 334
  • [2] Thermal fluctuations in artificial spin ice
    Kapaklis, Vassilios
    Arnalds, Unnar B.
    Farhan, Alan
    Chopdekar, Rajesh V.
    Balan, Ana
    Scholl, Andreas
    Heyderman, Laura J.
    Hjorvarsson, Bjorgvin
    NATURE NANOTECHNOLOGY, 2014, 9 (07) : 514 - 519
  • [3] Understanding thermal annealing of artificial spin ice
    Zhang, Xiaoyu
    Lao, Yuyang
    Sklenar, Joseph
    Bingham, Nicholas S.
    Batley, Joseph T.
    Watts, Justin D.
    Nisoli, Cristiano
    Leighton, Chris
    Schiffer, Peter
    APL MATERIALS, 2019, 7 (11):
  • [4] Thermal Phase Transitions in Artificial Spin Ice
    Levis, Demian
    Cugliandolo, Leticia F.
    Foini, Laura
    Tarzia, Marco
    PHYSICAL REVIEW LETTERS, 2013, 110 (20)
  • [5] Direct Observation of Thermal Relaxation in Artificial Spin Ice
    Farhan, A.
    Derlet, P. M.
    Kleibert, A.
    Balan, A.
    Chopdekar, R. V.
    Wyss, M.
    Perron, J.
    Scholl, A.
    Nolting, F.
    Heyderman, L. J.
    PHYSICAL REVIEW LETTERS, 2013, 111 (05)
  • [6] Gibbsianizing nonequilibrium dynamics of artificial spin ice and other spin systems
    Lammert, Paul E.
    Crespi, Vincent H.
    Nisoli, Cristiano
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [7] Magnetostatic bias in Kagome artificial spin ice systems
    Panagiotopoulos, I.
    PHYSICA B-CONDENSED MATTER, 2016, 486 : 21 - 23
  • [8] On the micromagnetic behavior of dipolar-coupled nanomagnets in defective square artificial spin ice systems
    Keswani, Neeti
    Das, Pintu
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (21)
  • [9] Thermal excitations within and among mesospins in artificial spin ice
    Skovdal, Bjorn Erik
    Sloetjes, Samuel D.
    Pohlit, Merlin
    Stopfel, Henry
    Kapaklis, Vassilios
    Hjorvarsson, Bjorgvin
    PHYSICAL REVIEW B, 2023, 107 (06)
  • [10] Agents & multiagent systems: En route towards complex intelligent systems
    Omicini, Andrea
    Mariani, Stefano
    INTELLIGENZA ARTIFICIALE, 2013, 7 (02) : 153 - 164