Experimental and LES investigation of premixed methane/air flame propagating in an obstructed chamber with two slits

被引:15
|
作者
Chen, Peng [1 ,2 ]
Sun, Yongduo [2 ]
Li, Yanchao [3 ]
Luo, Gang [2 ]
机构
[1] China Univ Min & Technol Beijing, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China
[2] China Univ Min & Technol Beijing, Coll Resource & Safety Engn, Beijing 100083, Peoples R China
[3] Dalian Univ Technol, Sch Chem Machinery & Safety Engn, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Methane/air jet flame; LES; Obstacle configurations; Pressure dynamics; Turbulent combustion regime; LARGE-EDDY SIMULATION; TURBULENT COMBUSTION; DYNAMIC FORMULATION; WRINKLING MODEL; OBSTACLES; CHANNEL;
D O I
10.1016/j.jlp.2016.11.005
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The paper aims at revealing the interaction of twin premixed methane/air jet flames in a closed duct, in which a thin obstacle with two slits is mounted to generate two free jet flames. In the experiment, a high-speed video camera and pressure transducers are used to study the flame shape changes and pressure dynamics. In the numerical simulations, large eddy simulation (LES) with a Power-Law model is applied to investigate the interaction between the moving flame and vortices induced by the obstacle. The results indicate that the flame propagation for all obstacle configurations in a closed duct can be divided into four typical stages, i.e. hemispherical flame, finger-shaped flame, jet flame and bidirectional propagation flame. For three obstacle configurations, the merged jet flames, paralleling jet flames, and separated jet flames are observed after twin jet flames are formed downstream of the two slits. The Power-Law model can well reproduce the flame shape changes, the dynamics of flame front, and the pressure growth rates. By analyzing the predicted flow structure and vorticity magnitude, the premixed methane/air flame propagation in an obstructed tube can be explained in the view of pure hydrodynamics. In addition, the transition from a "corrugated flamelets" to a "thin reaction zones" is observed in the simulation. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:711 / 721
页数:11
相关论文
共 50 条
  • [41] Experimental and numerical study of laminar premixed dimethyl ether/methane-air flame
    Yu, Huibin
    Hu, Erjiang
    Cheng, Yu
    Zhang, Xinyi
    Huang, Zuohua
    FUEL, 2014, 136 : 37 - 45
  • [42] Analytical and experimental study of premixed methane-air flame propagation narrow channels
    Chao, C. Y. H.
    Hui, K. S.
    Kong, W.
    Cheng, P.
    Wang, J. H.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (7-8) : 1302 - 1313
  • [43] Experimental study on the effect of bifurcations on the flame speed of premixed methane/air explosions in ducts
    Zhu, Chuan-jie
    Gao, Zi-shan
    Lu, Xi-miao
    Lin, Bai-quan
    Guo, Chang
    Sun, Yu-min
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2017, 49 : 545 - 550
  • [44] Numerical simulation of premixed methane-air flame propagating parameters in square tube with different solid obstacles
    Wang, Quan
    Ma, Lionghao
    Shen, Zhaowu
    Guo, Ziru
    9TH ASIA-OCEANIA SYMPOSIUM ON FIRE SCIENCE AND TECHNOLOGY, 2013, 62 : 397 - 403
  • [45] An Experimental Study on Premixed Methane-Air Flame Propagation with Intrinsic Instabilities in a Hele-Shaw Chamber at Various Inclined Angles
    Chang, Junfeng
    Zhu, Wenchu
    Kang, Xin
    COMBUSTION SCIENCE AND TECHNOLOGY, 2024,
  • [46] Numerical investigation of premixed methane-air flame in two-dimensional half open tube in the early stages
    Deng, Haoxin
    Huang, Mingming
    Wen, Xiaoping
    Chen, Guoyan
    Wang, Fahui
    Yao, Zhifeng
    FUEL, 2020, 272 (272)
  • [47] Observation of propagating flame of methane-air mixture
    Niu, Fang
    Liu, Qing-Ming
    Bai, Chun-Hua
    He, Xue-Qiu
    Gong, Guang-Dong
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2012, 32 (05): : 441 - 445
  • [48] Performance assessment of flamelet models in flame-resolved LES of a high Karlovitz methane/air stratified premixed jet flame
    Cunha Galeazzo, Flavio Cesar
    Savard, Bruno
    Wang, Haiou
    Hawkes, Evatt R.
    Chen, Jacqueline H.
    Krieger Filho, Guenther Carlos
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (02) : 2545 - 2553
  • [49] Flame kinetic behavior of premixed hydrogen-air explosion in an obstructed channel
    Sheng, Zhonghua
    Yang, Guogang
    Li, Shian
    Shen, Qiuwan
    Sun, Han
    Xu, Zhuangzhuang
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 3007 - 3022
  • [50] Effects of obstacle on premixed flame microstructure and flame propagation in methane/air explosion
    Yang, Y
    Zhu, HQ
    Liu, JZ
    THEORY AND PRACTICE OF ENERGETIC MATERIALS, VOL 5, PARTS A AND B, 2003, : 587 - 592