Experimental and LES investigation of premixed methane/air flame propagating in an obstructed chamber with two slits

被引:15
|
作者
Chen, Peng [1 ,2 ]
Sun, Yongduo [2 ]
Li, Yanchao [3 ]
Luo, Gang [2 ]
机构
[1] China Univ Min & Technol Beijing, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China
[2] China Univ Min & Technol Beijing, Coll Resource & Safety Engn, Beijing 100083, Peoples R China
[3] Dalian Univ Technol, Sch Chem Machinery & Safety Engn, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Methane/air jet flame; LES; Obstacle configurations; Pressure dynamics; Turbulent combustion regime; LARGE-EDDY SIMULATION; TURBULENT COMBUSTION; DYNAMIC FORMULATION; WRINKLING MODEL; OBSTACLES; CHANNEL;
D O I
10.1016/j.jlp.2016.11.005
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The paper aims at revealing the interaction of twin premixed methane/air jet flames in a closed duct, in which a thin obstacle with two slits is mounted to generate two free jet flames. In the experiment, a high-speed video camera and pressure transducers are used to study the flame shape changes and pressure dynamics. In the numerical simulations, large eddy simulation (LES) with a Power-Law model is applied to investigate the interaction between the moving flame and vortices induced by the obstacle. The results indicate that the flame propagation for all obstacle configurations in a closed duct can be divided into four typical stages, i.e. hemispherical flame, finger-shaped flame, jet flame and bidirectional propagation flame. For three obstacle configurations, the merged jet flames, paralleling jet flames, and separated jet flames are observed after twin jet flames are formed downstream of the two slits. The Power-Law model can well reproduce the flame shape changes, the dynamics of flame front, and the pressure growth rates. By analyzing the predicted flow structure and vorticity magnitude, the premixed methane/air flame propagation in an obstructed tube can be explained in the view of pure hydrodynamics. In addition, the transition from a "corrugated flamelets" to a "thin reaction zones" is observed in the simulation. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:711 / 721
页数:11
相关论文
共 50 条
  • [31] Numerical Investigation on the Flame Characteristics of Lean Premixed Methane Flame Piloted with Rich Premixed Flame
    Zhang, Lili
    Cui, Yongzhang
    Yin, Pengfei
    Mao, Wenlong
    Zhang, Pengzhao
    ENERGIES, 2024, 17 (14)
  • [32] Ignition Characteristics of Premixed Methane/air in Micro Chamber
    Yang, H. L.
    Huo, J. P.
    Jiang, L. Q.
    Wang, X. H.
    Zhao, D. Q.
    14TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2014), 2014, 557
  • [33] Experimental investigation on flame stability and emissions of lean premixed methane-air combustion in a developed divergent porous burner
    Liu, Yang
    Deng, Yangbo
    Shi, Junrui
    Liu, Yongqi
    Wang, Xiaolong
    Ge, Bingquan
    Min, Zhenyu
    JOURNAL OF CLEANER PRODUCTION, 2023, 405
  • [34] Flame structure characteristics of premixed methane and air in tube
    Liu, Yi
    Sun, Jin-Hua
    Chen, Dong-Liang
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2006, 27 (SUPPL.): : 137 - 140
  • [35] Low stretched premixed methane-air flame
    Ju, Yiguang
    Guo, Hongsheng
    Maruta, Kaoru
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1997, 63 (606): : 699 - 704
  • [36] A study of flame observables in premixed methane - Air flames
    Najm, HN
    Knio, OM
    Paul, PH
    Wyckoff, PS
    COMBUSTION SCIENCE AND TECHNOLOGY, 1998, 140 (1-6) : 369 - +
  • [37] Experimental study on the flame behaviors of premixed methane/air mixture in horizontal rectangular ducts
    Chen, Dongliang
    Sun, Jinhua
    Chen, Sining
    Liu, Yi
    Chu, Guanquan
    27TH INTERNATIONAL CONGRESS ON HIGH SPEED PHOTOGRAPHY AND PHOTONICS, PRTS 1-3, 2007, 6279
  • [38] Experimental study of premixed methane-air flame coupled with an external acoustic field
    Arefyev, K. Yu
    Krikunova, A. I.
    Panov, V. A.
    XXXIII INTERNATIONAL CONFERENCE ON EQUATIONS OF STATE FOR MATTER, 2019, 1147
  • [39] Experimental study on premixed flame propagation of hydrogen/methane/air deflagration in closed ducts
    Zheng, Kai
    Yu, Minggao
    Zheng, Ligang
    Wen, Xiaoping
    Chu, Tingxiang
    Wang, Liang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (08) : 5426 - 5438
  • [40] Experimental study of the effect of a cavity on propagation behavior of premixed methane-air flame
    Ma, Tianbao
    Wu, Deyao
    Li, Jian
    FUEL, 2023, 338