Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips

被引:21
|
作者
Pensabene, Virginia [1 ,2 ,3 ]
Costa, Lino [4 ]
Terekhov, Alexander Y. [4 ]
Gnecco, Juan S. [5 ]
Wikswo, John P. [1 ,6 ,7 ,8 ]
Hofmeister, William H. [4 ,6 ]
机构
[1] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[2] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Leeds, Leeds Inst Biomed & Clin Sci, Sch Med, Leeds LS9 7TF, W Yorkshire, England
[4] Univ Tennessee, Inst Space, Ctr Laser Applicat, Tullahoma, TN 37388 USA
[5] Vanderbilt Univ, Dept Cellular & Mol Pathol, Nashville, TN 37235 USA
[6] Vanderbilt Univ, Vanderbilt Inst Integrat Biosyst Res & Educ, Nashville, TN 37235 USA
[7] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[8] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37235 USA
基金
美国国家卫生研究院;
关键词
semipermeable ultrathin polymer membranes; microporous ultrathin polymer films; spin coating; microneedles; femtosecond laser machining; polymer replication; CELL-INTERACTION; FILMS; DEGRADATION; NANOSHEETS; SURFACE; FABRICATION; EVOLUTION; ADHESIVE; CULTURE; ARRAYS;
D O I
10.1021/acsami.6b05754
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The basal lamina or basement membrane (BM) is a key physiological system that participates in physicochemical signaling between tissue types.. Its formation and function are essential in tissue maintenance, growth, angiogenesis, disease progression, and; immunology. In vitro models Of the BM (e.g., Boyden and transwell chambers) are common in cell biology and lab-on-a-chip devices where cells require apical and basolateral polarization. Extravasation, intravasation, membrane transport of chemokines, cytokines, chemotaxis of cells, and other key functions are routinely studied in these models. The goal of the present study was to integrate a semipermeable ultrathin polymer membrane with precisely positioned pores of 2 mu m diameter in a microfluidic device with apical and basolateral chambers. We selected poly(L-lactic acid) (PLLA), a, transparent biocompatible polymer, to prepare the semipermeable ultrathin membranes. The pores were generated by pattern transfer using a three-step method coupling femtosecond laser machining, polymer replication, and spin:coating. Each step of the fabrication process was characterized by scanning electron microscopy to investigate reliability of the process and fidelity of pattern transfer. In order to evaluate the compatibility of the fabrication method with organs-on-a-chip technology, porous PLLA membranes were embedded in polydimethylsiloxane (PDMS) microfluidic devices and used to grow human umbilical vein endothelial cells (HUVECS) on top of the membrane with perfusion through the basolateral chamber. Viability of cells, optical transparency of membranes and strong adhesion of PLLA to PDMS were observed, thus confirming the suitability of the prepared membranes for use, in organs-on-a-chip devices.
引用
收藏
页码:22629 / 22636
页数:8
相关论文
共 50 条
  • [1] Organs-on-Chips
    Borenstein, Jeffrey T.
    IEEE PULSE, 2016, 7 (02) : 22 - 26
  • [2] Flat and microstructured polymeric membranes in organs-on-chips
    Pasman, Thijs
    Grijpma, Dirk
    Stamatialis, Dimitrios
    Poot, Andreas
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (144)
  • [3] Human organs-on-chips
    Bahinski, A.
    TOXICOLOGY LETTERS, 2016, 259 : S11 - S11
  • [4] Microfluidic organs-on-chips
    Bhatia, Sangeeta N.
    Ingber, Donald E.
    NATURE BIOTECHNOLOGY, 2014, 32 (08) : 760 - 772
  • [5] Microfluidic organs-on-chips
    Sangeeta N Bhatia
    Donald E Ingber
    Nature Biotechnology, 2014, 32 : 760 - 772
  • [6] Bioprinters for organs-on-chips
    Miri, Amir K.
    Mostafavi, Ebrahim
    Khorsandi, Danial
    Hu, Shu-Kai
    Malpica, Matthew
    Khademhosseini, Ali
    BIOFABRICATION, 2019, 11 (04)
  • [7] Microfabricated tuneable and transferable porous PDMS membranes for Organs-on-Chips
    Quiros-Solano, W. F.
    Gaio, N.
    Stassen, O. M. J. A.
    Arik, Y. B.
    Silvestri, C.
    Van Engeland, N. C. A.
    Van der Meer, A.
    Passier, R.
    Sahlgren, C. M.
    Bouten, C. V. C.
    van den Berg, A.
    Dekker, R.
    Sarro, P. M.
    SCIENTIFIC REPORTS, 2018, 8
  • [8] Organs-on-chips and Its Applications
    Sun Wei
    Chen Yu-Qing
    Luo Guo-An
    Zhang Min
    Zhang Hong-Yang
    Wang Yue-Rong
    Hu Ping
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2016, 44 (04) : 533 - 541
  • [9] Microfabricated tuneable and transferable porous PDMS membranes for Organs-on-Chips
    W. F. Quirós-Solano
    N. Gaio
    O. M. J. A. Stassen
    Y. B. Arik
    C. Silvestri
    N. C. A. Van Engeland
    A. Van der Meer
    R. Passier
    C. M. Sahlgren
    C. V. C. Bouten
    A. van den Berg
    R. Dekker
    P. M. Sarro
    Scientific Reports, 8
  • [10] Microfabrication of human organs-on-chips
    Dongeun Huh
    Hyun Jung Kim
    Jacob P Fraser
    Daniel E Shea
    Mohammed Khan
    Anthony Bahinski
    Geraldine A Hamilton
    Donald E Ingber
    Nature Protocols, 2013, 8 : 2135 - 2157