Microfluidic organs-on-chips

被引:2227
|
作者
Bhatia, Sangeeta N. [1 ,2 ,3 ,4 ]
Ingber, Donald E. [5 ,6 ,7 ,8 ,9 ]
机构
[1] MIT, Koch Inst, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[3] Broad Inst, Cambridge, MA USA
[4] Brigham & Womens Hosp, Dept Med, Boston, MA 02115 USA
[5] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[6] Boston Childrens Hosp, Dept Pathol, Vasc Biol Program, Boston, MA USA
[7] Boston Childrens Hosp, Dept Surg, Boston, MA USA
[8] Harvard Univ, Sch Med, Boston, MA USA
[9] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
PRIMARY HUMAN HEPATOCYTES; PLURIPOTENT STEM-CELL; IN-VITRO MODEL; A-CHIP; BREAST-CANCER; HUMAN LIVER; EXTRACELLULAR-MATRIX; HEPATIC-CLEARANCE; ENDOTHELIAL-CELLS; GENE-EXPRESSION;
D O I
10.1038/nbt.2989
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
An organ-on-a-chip is a microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue-and organ-level physiology. By recapitulating the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments and vascular perfusion of the body, these devices produce levels of tissue and organ functionality not possible with conventional 2D or 3D culture systems. They also enable high-resolution, real-time imaging and in vitro analysis of biochemical, genetic and metabolic activities of living cells in a functional tissue and organ context. This technology has great potential to advance the study of tissue development, organ physiology and disease etiology. In the context of drug discovery and development, it should be especially valuable for the study of molecular mechanisms of action, prioritization of lead candidates, toxicity testing and biomarker identification.
引用
收藏
页码:760 / 772
页数:13
相关论文
共 50 条
  • [1] Microfluidic organs-on-chips
    Sangeeta N Bhatia
    Donald E Ingber
    Nature Biotechnology, 2014, 32 : 760 - 772
  • [2] Modelling cancer in microfluidic human organs-on-chips
    Sontheimer-Phelps, Alexandra
    Hassell, Bryan A.
    Ingber, Donald E.
    NATURE REVIEWS CANCER, 2019, 19 (02) : 65 - 81
  • [3] Modelling cancer in microfluidic human organs-on-chips
    Alexandra Sontheimer-Phelps
    Bryan A. Hassell
    Donald E. Ingber
    Nature Reviews Cancer, 2019, 19 : 65 - 81
  • [4] Organs-on-Chips
    Borenstein, Jeffrey T.
    IEEE PULSE, 2016, 7 (02) : 22 - 26
  • [5] Human organs-on-chips
    Bahinski, A.
    TOXICOLOGY LETTERS, 2016, 259 : S11 - S11
  • [6] Bioprinters for organs-on-chips
    Miri, Amir K.
    Mostafavi, Ebrahim
    Khorsandi, Danial
    Hu, Shu-Kai
    Malpica, Matthew
    Khademhosseini, Ali
    BIOFABRICATION, 2019, 11 (04)
  • [7] Organs-on-chips and Its Applications
    Sun Wei
    Chen Yu-Qing
    Luo Guo-An
    Zhang Min
    Zhang Hong-Yang
    Wang Yue-Rong
    Hu Ping
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2016, 44 (04) : 533 - 541
  • [8] Microfabrication of human organs-on-chips
    Dongeun Huh
    Hyun Jung Kim
    Jacob P Fraser
    Daniel E Shea
    Mohammed Khan
    Anthony Bahinski
    Geraldine A Hamilton
    Donald E Ingber
    Nature Protocols, 2013, 8 : 2135 - 2157
  • [9] Organs-on-chips for vascular function
    Van der Meer, Andries
    TOXICOLOGY LETTERS, 2017, 280 : S29 - S29