Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips

被引:21
|
作者
Pensabene, Virginia [1 ,2 ,3 ]
Costa, Lino [4 ]
Terekhov, Alexander Y. [4 ]
Gnecco, Juan S. [5 ]
Wikswo, John P. [1 ,6 ,7 ,8 ]
Hofmeister, William H. [4 ,6 ]
机构
[1] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[2] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Leeds, Leeds Inst Biomed & Clin Sci, Sch Med, Leeds LS9 7TF, W Yorkshire, England
[4] Univ Tennessee, Inst Space, Ctr Laser Applicat, Tullahoma, TN 37388 USA
[5] Vanderbilt Univ, Dept Cellular & Mol Pathol, Nashville, TN 37235 USA
[6] Vanderbilt Univ, Vanderbilt Inst Integrat Biosyst Res & Educ, Nashville, TN 37235 USA
[7] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[8] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37235 USA
基金
美国国家卫生研究院;
关键词
semipermeable ultrathin polymer membranes; microporous ultrathin polymer films; spin coating; microneedles; femtosecond laser machining; polymer replication; CELL-INTERACTION; FILMS; DEGRADATION; NANOSHEETS; SURFACE; FABRICATION; EVOLUTION; ADHESIVE; CULTURE; ARRAYS;
D O I
10.1021/acsami.6b05754
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The basal lamina or basement membrane (BM) is a key physiological system that participates in physicochemical signaling between tissue types.. Its formation and function are essential in tissue maintenance, growth, angiogenesis, disease progression, and; immunology. In vitro models Of the BM (e.g., Boyden and transwell chambers) are common in cell biology and lab-on-a-chip devices where cells require apical and basolateral polarization. Extravasation, intravasation, membrane transport of chemokines, cytokines, chemotaxis of cells, and other key functions are routinely studied in these models. The goal of the present study was to integrate a semipermeable ultrathin polymer membrane with precisely positioned pores of 2 mu m diameter in a microfluidic device with apical and basolateral chambers. We selected poly(L-lactic acid) (PLLA), a, transparent biocompatible polymer, to prepare the semipermeable ultrathin membranes. The pores were generated by pattern transfer using a three-step method coupling femtosecond laser machining, polymer replication, and spin:coating. Each step of the fabrication process was characterized by scanning electron microscopy to investigate reliability of the process and fidelity of pattern transfer. In order to evaluate the compatibility of the fabrication method with organs-on-a-chip technology, porous PLLA membranes were embedded in polydimethylsiloxane (PDMS) microfluidic devices and used to grow human umbilical vein endothelial cells (HUVECS) on top of the membrane with perfusion through the basolateral chamber. Viability of cells, optical transparency of membranes and strong adhesion of PLLA to PDMS were observed, thus confirming the suitability of the prepared membranes for use, in organs-on-a-chip devices.
引用
收藏
页码:22629 / 22636
页数:8
相关论文
共 50 条
  • [31] Organs-on-chips: research and commercial perspectives
    Balijepalli, Aarathi
    Sivaramakrishan, Vaibhav
    DRUG DISCOVERY TODAY, 2017, 22 (02) : 397 - 403
  • [32] Organs-on-chips at the frontiers of drug discovery
    Eric W. Esch
    Anthony Bahinski
    Dongeun Huh
    Nature Reviews Drug Discovery, 2015, 14 : 248 - 260
  • [33] Organs-on-chips: breaking the in vitro impasse
    van der Meer, Andries D.
    van den Berg, Albert
    INTEGRATIVE BIOLOGY, 2012, 4 (05) : 461 - 470
  • [34] Microengineered physiological biomimicry: Organs-on-Chips
    Huh, Dongeun
    Torisawa, Yu-suke
    Hamilton, Geraldine A.
    Kim, Hyun Jung
    Ingber, Donald E.
    LAB ON A CHIP, 2012, 12 (12) : 2156 - 2164
  • [35] An Overview of Organs-on-Chips Based on Deep Learning
    Li, Jintao
    Chen, Jie
    Bai, Hua
    Wang, Haiwei
    Hao, Shiping
    Ding, Yang
    Peng, Bo
    Zhang, Jing
    Li, Lin
    Huang, Wei
    RESEARCH, 2022, 2022
  • [36] Organs-on-chips: Progress, challenges, and future directions
    Low, Lucie A.
    Tagle, Danilo A.
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2017, 242 (16) : 1573 - 1578
  • [37] Organs-on-chips: Advanced engineered living systems
    Liu, Yi
    Bian, Liming
    APL BIOENGINEERING, 2024, 8 (04):
  • [38] Integrated platform for operating and interrogating organs-on-chips
    Ishahak, Matthew
    Birman, Liev
    Carbonero, Daniel
    Hill, Jordan
    Hernandez, Adiel
    Rawal, Siddarth
    Agarwal, Ashutosh
    ANALYTICAL METHODS, 2019, 11 (43) : 5645 - 5651
  • [39] Reverse Engineering Human Pathophysiology with Organs-on-Chips
    Ingber, Donald E.
    CELL, 2016, 164 (06) : 1105 - 1109
  • [40] Accelerating drug discovery via organs-on-chips
    Chan, Chung Yu
    Huang, Po-Hsun
    Guo, Feng
    Ding, Xiaoyun
    Kapur, Vivek
    Mai, John D.
    Yuen, Po Ki
    Huang, Tony Jun
    LAB ON A CHIP, 2013, 13 (24) : 4697 - 4710