A GPU Algorithm for Detecting Contextual Outliers in Multiple Concurrent Data Streams

被引:5
|
作者
Borah, Abinash [1 ]
Gruenwald, Le [1 ]
Leal, Eleazar [2 ]
Panjei, Egawati [1 ]
机构
[1] Univ Oklahoma, Sch Comp Sci, Norman, OK 73019 USA
[2] Univ Minnesota, Dept Comp Sci, Duluth, MN 55812 USA
来源
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2021年
基金
美国国家科学基金会;
关键词
Data Stream; Outlier Detection; Contextual Outlier; GPU;
D O I
10.1109/BigData52589.2021.9671460
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A data stream is an infinite sequence of data points generated from a source continuously at a fast rate, which is characterized by the transiency of the data points, the temporal relationship among the data points, concept drift, and multi-dimensionality of data points. Outlier detection in data streams thus needs to deal with the characteristics of Big Data applications such as volume, velocity, and variety. The problem of detecting outliers in multiple concurrent data streams introduces additional challenges to the problem. In this paper, we propose a parallel outlier detection technique CODS to detect Contextual Outliers in multiple concurrent independent multi-dimensional Data Streams using a Graphics Processing Unit (GPU). The proposed algorithm addresses all the aforesaid characteristics of data streams. A set of experiments demonstrates reasonable outlier detection accuracy and scalability of CODS with the number of data streams.
引用
收藏
页码:2737 / 2742
页数:6
相关论文
共 50 条
  • [41] Detecting outliers in categorical data through rough clustering
    Suri, N. N. R. Ranga
    Murty, M. Narasimha
    Athithan, G.
    NATURAL COMPUTING, 2016, 15 (03) : 385 - 394
  • [42] Detecting Volatility Shift in Data Streams
    Huang, David Tse Jung
    Koh, Yun Sing
    Dobbie, Gillian
    Pears, Russel
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 863 - 868
  • [43] Detecting and ranking outliers in high-dimensional data
    Kaur, Amardeep
    Datta, Amitava
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2019, 11 (01) : 75 - 87
  • [44] Detecting outliers in categorical data through rough clustering
    N. N. R. Ranga Suri
    M. Narasimha Murty
    G. Athithan
    Natural Computing, 2016, 15 : 385 - 394
  • [45] Detecting Anomalies with Autoencoders on Data Streams
    Cazzonelli, Lucas
    Kulbach, Cedric
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 258 - 274
  • [46] IDENTIFYING MULTIPLE OUTLIERS IN MULTIVARIATE DATA
    HADI, AS
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1992, 54 (03): : 761 - 771
  • [47] Unsupervised online detection and prediction of outliers in streams of sensor data
    Reunanen, Niko
    Raty, Tomi
    Jokinen, Juho J.
    Hoyt, Tyler
    Culler, David
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2020, 9 (03) : 285 - 314
  • [48] STREAMKRIMP: Detecting Change in Data Streams
    van Leeuwen, Matthijs
    Siebes, Arno
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART I, PROCEEDINGS, 2008, 5211 : 672 - 687
  • [49] A new method for detecting outliers in Data Envelopment Analysis
    Tran, Nam Anh
    Shively, Gerald
    Preckel, Paul
    APPLIED ECONOMICS LETTERS, 2010, 17 (04) : 313 - 316
  • [50] Improving outliers detection in data streams using LiCS and voting
    Benjelloun, Fatima-Zahra
    Oussous, Ahmed
    Bennani, Amine
    Belfkih, Samir
    Lahcen, Ayoub Ait
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2021, 33 (10) : 1177 - 1185