A GPU Algorithm for Detecting Contextual Outliers in Multiple Concurrent Data Streams

被引:5
|
作者
Borah, Abinash [1 ]
Gruenwald, Le [1 ]
Leal, Eleazar [2 ]
Panjei, Egawati [1 ]
机构
[1] Univ Oklahoma, Sch Comp Sci, Norman, OK 73019 USA
[2] Univ Minnesota, Dept Comp Sci, Duluth, MN 55812 USA
来源
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA) | 2021年
基金
美国国家科学基金会;
关键词
Data Stream; Outlier Detection; Contextual Outlier; GPU;
D O I
10.1109/BigData52589.2021.9671460
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A data stream is an infinite sequence of data points generated from a source continuously at a fast rate, which is characterized by the transiency of the data points, the temporal relationship among the data points, concept drift, and multi-dimensionality of data points. Outlier detection in data streams thus needs to deal with the characteristics of Big Data applications such as volume, velocity, and variety. The problem of detecting outliers in multiple concurrent data streams introduces additional challenges to the problem. In this paper, we propose a parallel outlier detection technique CODS to detect Contextual Outliers in multiple concurrent independent multi-dimensional Data Streams using a Graphics Processing Unit (GPU). The proposed algorithm addresses all the aforesaid characteristics of data streams. A set of experiments demonstrates reasonable outlier detection accuracy and scalability of CODS with the number of data streams.
引用
收藏
页码:2737 / 2742
页数:6
相关论文
共 50 条
  • [21] Detecting Outliers in Multivariate Laboratory Data
    Southworth, Harry
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2008, 18 (06) : 1178 - 1183
  • [22] Discovering outlying attributes of outliers in data streams
    Panjei, Egawati
    Gruenwald, Le
    DATA & KNOWLEDGE ENGINEERING, 2024, 154
  • [23] File prefetching algorithm for concurrent streams
    Wu F.-G.
    Xi H.-S.
    Xu C.-F.
    Ruan Jian Xue Bao/Journal of Software, 2010, 21 (08): : 1820 - 1833
  • [24] Detecting Moving Object Outliers In Massive-Scale Trajectory Streams
    Yu, Yanwei
    Cao, Lei
    Wang, Qin
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 422 - 431
  • [25] Clustering Algorithm for Multiple Data Streams Based on Data Cloud Node
    Li, Sa
    Shao, Liangshan
    PROGRESS IN MECHATRONICS AND INFORMATION TECHNOLOGY, PTS 1 AND 2, 2014, 462-463 : 247 - 250
  • [26] Fully Concurrent GPU Data Structures
    Awad, Muhammad Abdelghaffar
    ProQuest Dissertations and Theses Global, 2022,
  • [27] A NEW GRAPHICAL-METHOD FOR DETECTING SINGLE AND MULTIPLE OUTLIERS IN UNIVARIATE AND MULTIVARIATE DATA
    BACONSHONE, J
    FUNG, WK
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1987, 36 (02): : 153 - 162
  • [28] Detection of outliers in data streams using grouping methods
    Duraj, Agnieszka
    Chomatek, Lukasz
    PRZEGLAD ELEKTROTECHNICZNY, 2019, 95 (02): : 85 - 87
  • [29] Detecting and tracking regional outliers in meteorological data
    Lu, Chang-Tien
    Kou, Yufeng
    Zhao, Jiang
    Chen, Li
    INFORMATION SCIENCES, 2007, 177 (07) : 1609 - 1632
  • [30] A note on detecting statistical outliers in psychophysical data
    Jones, Pete R.
    ATTENTION PERCEPTION & PSYCHOPHYSICS, 2019, 81 (05) : 1189 - 1196