Enhancing protein backbone angle prediction by using simpler models of deep neural networks (vol 10, 19430, 2020)

被引:0
|
作者
Mataeimoghadam, Fereshteh
Newton, M. A. Hakim
Dehzangi, Abdollah
Karim, Abdul
Jayaram, B.
Ranganathan, Shoba
Sattar, Abdul
机构
[1] Griffith University,School of Information and Communication Technology
[2] Griffith University,Institute of Integrated and Intelligent Systems
[3] Rutgers University,Department of Computer Science
[4] Rutgers University,Center for Computational and Integrative Biology
[5] IIT Delhi,Department of Chemistry and School of Biological Sciences
[6] Macquarie University,Department of Chemistry and Biomolecular Sciences
关键词
D O I
10.1038/s41598-021-96666-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning (vol 10, 5316, 2019)
    Jha, Dipendra
    Choudhary, Kamal
    Tavazza, Francesca
    Liao, Wei-keng
    Choudhary, Alok
    Campbell, Carelyn
    Agrawal, Ankit
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [42] Automated glioma grading on conventional MRI images using deep convolutional neural networks (vol 47, pg 3044, 2020)
    Zhuge, Ying
    Ning, Holly
    Mathen, Peter
    Cheng, Jason Y.
    Krauze, Andra, V
    Camphausen, Kevin
    Miller, Robert W.
    MEDICAL PHYSICS, 2023, 50 (09) : 5930 - 5931
  • [43] RETRACTION: Lightweight deep dense Demosaicking and Denoising using convolutional neural networks (Retraction of Vol 70, Pg 34385, 2020)
    Din, Sadia
    Paul, Anand
    Ahmad, Awais
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (13) : 20703 - 20703
  • [44] Sequence-based Protein-Protein Interaction Prediction using Greedy Layer-Wise Training of Deep Neural Networks
    Hanggara, Faruq Sandi
    Anam, Khairul
    CLIMATE CHANGE AND SUSTAINABILITY ENGINEERING IN ASEAN 2019, 2020, 2278
  • [45] DNCON2: improved protein contact prediction using two-level deep convolutional neural networks
    Adhikari, Badri
    Hou, Jie
    Cheng, Jianlin
    BIOINFORMATICS, 2018, 34 (09) : 1466 - 1472
  • [46] CoCoPRED: coiled-coil protein structural feature prediction from amino acid sequence using deep neural networks
    Feng, Shi-Hao
    Xia, Chun-Qiu
    Shen, Hong-Bin
    BIOINFORMATICS, 2022, 38 (03) : 720 - 729
  • [47] xCAPT5: protein–protein interaction prediction using deep and wide multi-kernel pooling convolutional neural networks with protein language model
    Thanh Hai Dang
    Tien Anh Vu
    BMC Bioinformatics, 25
  • [48] Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks (vol 11, 1551, 2020)
    Golestani, Negar
    Moghaddam, Mahta
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [49] Evaluation of CBCT scatter correction using deep convolutional neural networks for head and neck adaptive proton therapy (vol 65, 245022, 2020)
    Lalonde, Arthur
    Winey, Brian
    Verburg, Joost
    Paganetti, Harald
    Sharp, Gregory C.
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (13):
  • [50] Prediction capability of different soil water retention curve models using artificial neural networks (vol 60, pg 859, 2014)
    Ebrahimi, E.
    Hossein, B.
    Neyshaburi, M. R.
    Abyaneh, H. Z.
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2014, 60 (05) : 733 - 733