Enhancing protein backbone angle prediction by using simpler models of deep neural networks (vol 10, 19430, 2020)

被引:0
|
作者
Mataeimoghadam, Fereshteh
Newton, M. A. Hakim
Dehzangi, Abdollah
Karim, Abdul
Jayaram, B.
Ranganathan, Shoba
Sattar, Abdul
机构
[1] Griffith University,School of Information and Communication Technology
[2] Griffith University,Institute of Integrated and Intelligent Systems
[3] Rutgers University,Department of Computer Science
[4] Rutgers University,Center for Computational and Integrative Biology
[5] IIT Delhi,Department of Chemistry and School of Biological Sciences
[6] Macquarie University,Department of Chemistry and Biomolecular Sciences
关键词
D O I
10.1038/s41598-021-96666-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Improved fragment sampling for ab initio protein structure prediction using deep neural networks
    Tong Wang
    Yanhua Qiao
    Wenze Ding
    Wenzhi Mao
    Yaoqi Zhou
    Haipeng Gong
    Nature Machine Intelligence, 2019, 1 : 347 - 355
  • [32] NONPARAMETRIC REGRESSION USING DEEP NEURAL NETWORKS WITH RELU ACTIVATION FUNCTION (vol 48, pg 1875, 2020)
    Schmidt-Hieber, Johannes
    Vu, Don
    ANNALS OF STATISTICS, 2024, 52 (01): : 413 - 414
  • [33] Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes (vol 10, 10200, 2020)
    Burgos-Artizzu, Xavier P.
    Coronado-Gutierrez, David
    Valenzuela-Alcaraz, Brenda
    Bonet-Carne, Elisenda
    Eixarch, Elisenda
    Crispi, Fatima
    Gratacos, Eduard
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [34] Ab-Initio Membrane Protein Amphipathic Helix Structure Prediction Using Deep Neural Networks
    Feng, Shi-Hao
    Xia, Chun-Qiu
    Zhang, Pei-Dong
    Shen, Hong-Bin
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (02) : 795 - 805
  • [35] Enhancing temperature and torque prediction in permanent magnet synchronous motors using deep learning neural networks and BiLSTM RNNs
    Bouziane, Mohammed
    Bouziane, Abdelghani
    Naima, Khatir
    Alkhafaji, Mohammed Ayad
    Afenyiveh, Serge Dzo Mawuefa
    Menni, Younes
    AIP ADVANCES, 2024, 14 (10)
  • [36] Evaluation of Key Parameters Using Deep Convolutional Neural Networks for Airborne Pollution (PM10) Prediction
    Antonio Aceves-Fernandez, Marco
    Dominguez-Guevara, Ricardo
    Carlos Pedraza-Ortega, Jesus
    Emilio Vargas-Soto, Jose
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [37] Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks
    Pan, Xiaoyong
    Rijnbeek, Peter
    Yan, Junchi
    Shen, Hong-Bin
    BMC GENOMICS, 2018, 19
  • [38] Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks
    Xiaoyong Pan
    Peter Rijnbeek
    Junchi Yan
    Hong-Bin Shen
    BMC Genomics, 19
  • [39] EGG: Accuracy Estimation of Individual Multimeric Protein Models Using Deep Energy-Based Models and Graph Neural Networks
    Siciliano, Andrew Jordan
    Zhao, Chenguang
    Liu, Tong
    Wang, Zheng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)
  • [40] Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13)
    Senior, Andrew W.
    Evans, Richard
    Jumper, John
    Kirkpatrick, James
    Sifre, Laurent
    Green, Tim
    Qin, Chongli
    Zidek, Augustin
    Nelson, Alexander W. R.
    Bridgland, Alex
    Penedones, Hugo
    Petersen, Stig
    Simonyan, Karen
    Crossan, Steve
    Kohli, Pushmeet
    Jones, David T.
    Silver, David
    Kavukcuoglu, Koray
    Hassabis, Demis
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2019, 87 (12) : 1141 - 1148