Behavioral Learning for Data Adjacent Graph Construction in Semi-supervised Learning

被引:0
|
作者
Liu, Zhen [1 ]
Yang, Jun-an [1 ]
Liu, Hui [1 ]
Wang, Wei [1 ]
机构
[1] Elect Engn Inst, Dept Commun Countermeasure, Hefei, Anhui, Peoples R China
关键词
semi-supervised learning; support vector machine; manifold learning; behavioral learning;
D O I
10.1109/CSA.2015.57
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Laplacian support vector machine could utilize the unlabeled samples for semi-supervised learning by applying the manifold regularization term. But the data adjacent graph in the manifold regularization term couldn't take advantage of the label information and the empirical setting of heat kernel parameter would also degrade the learning performance. Inspired by human behavioral learning theory, a novel semi-supervised learning with local behavioral similarity was proposed in this paper to solve those problems. In detail, the new edge weight with label information was introduced and the local distribution parameter considering the underlying probability distribution in the neighborhood of a point was applied. Extensive experiments on public data sets show the good performance and validity of the new algorithm.
引用
收藏
页码:125 / 129
页数:5
相关论文
共 50 条
  • [41] On the effectiveness of laplacian normalization for graph semi-supervised learning
    Johnson, Rie
    Zhang, Tong
    JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 1489 - 1517
  • [42] Adaptive Graph Constrained NMF for Semi-Supervised Learning
    Li, Qian
    Jing, Liping
    Yu, Jian
    PARTIALLY SUPERVISED LEARNING, PSL 2013, 2013, 8193 : 36 - 48
  • [43] Cyclic label propagation for graph semi-supervised learning
    Li, Zhao
    Liu, Yixin
    Zhang, Zhen
    Pan, Shirui
    Gao, Jianliang
    Bu, Jiajun
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (02): : 703 - 721
  • [44] Graph Ensemble Networks for Semi-supervised Embedding Learning
    Tang, Hui
    Liang, Xun
    Wu, Bo
    Guan, Zhenyu
    Guo, Yuhui
    Zheng, Xiangping
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2021, 12815 : 408 - 420
  • [45] CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
    Li, Junnan
    Xiong, Caiming
    Hoi, Steven C. H.
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9455 - 9464
  • [46] Nonnegative Sparse and KNN graph for semi-supervised learning
    Zhang, Yunbin
    Zhang, Chunmei
    Zhou, Qianqi
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS (AMEII 2016), 2016, 73 : 1178 - 1182
  • [47] Adaptive Graph Learning for Semi-supervised Classification of GCNs
    Wan, Yingying
    Zhan, Mengmeng
    Li, Yangding
    DATABASES THEORY AND APPLICATIONS (ADC 2021), 2021, 12610 : 13 - 22
  • [48] Adaptive and structured graph learning for semi-supervised clustering
    Chen, Long
    Zhong, Zhi
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [49] Semi-Supervised Learning on an Augmented Graph with Class Labels
    Li, Nan
    Latecki, Longin Jan
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 1571 - 1572
  • [50] Fairness in graph-based semi-supervised learning
    Tao Zhang
    Tianqing Zhu
    Mengde Han
    Fengwen Chen
    Jing Li
    Wanlei Zhou
    Philip S Yu
    Knowledge and Information Systems, 2023, 65 : 543 - 570