Graph Ensemble Networks for Semi-supervised Embedding Learning

被引:2
|
作者
Tang, Hui [1 ]
Liang, Xun [1 ]
Wu, Bo [1 ]
Guan, Zhenyu [1 ]
Guo, Yuhui [1 ]
Zheng, Xiangping [1 ]
机构
[1] Renmin Univ, Sch Informat, Beijing, Peoples R China
关键词
Graph Convolutional Network; Semi-supervised learing; Data augmentation; Ensemble learning; Attention mechanism; Knowledge distillation;
D O I
10.1007/978-3-030-82136-4_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, semi-supervised graph learning has attracted growing research interests. Since the Graph Convolutional Network (GCN) was formulated, some studies argue that shallow architectures fall through over-fitting and have limited ability to aggregate information from high-order neighbors. However, although deep GCNs have powerful nonlinear fitting ability, problems such as over-smoothing still exist with the expansion of layer depth. In this paper, we explore such an ignored question that whether a shallow GCN can achieve significant improvement over deep GCNs. Motivated by this curiosity, we propose an effective graph learning framework-Graph Ensemble Network (GENet) for semi-supervised learning tasks. We combine ensemble learning with data augmentation, which samples multi-subgraphs by randomly removing some edges to generate different topology spaces, and knowledge distillation is introduced to make the multi-subnetworks learn collaboratively. The central idea is that employ attention mechanism and consistency constraint to learn adaptive importance weights of the embeddings from the ensemble model, and then transfer learned knowledge to a shallow GCN. Extensive experiments on graph node classification verify the superiority of the proposed GENet compared with the state-of-the-art methods.
引用
收藏
页码:408 / 420
页数:13
相关论文
共 50 条
  • [1] Sharpened graph ensemble for semi-supervised learning
    Choi, Inae
    Park, Kanghee
    Shin, Hyunjung
    [J]. INTELLIGENT DATA ANALYSIS, 2013, 17 (03) : 387 - 398
  • [2] Semi-supervised Learning with Ensemble Learning and Graph Sharpening
    Choi, Inae
    Shin, Hyunjung
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2008, 2008, 5326 : 172 - 179
  • [3] Semi-supervised clustering with deep metric learning and graph embedding
    Xiaocui Li
    Hongzhi Yin
    Ke Zhou
    Xiaofang Zhou
    [J]. World Wide Web, 2020, 23 : 781 - 798
  • [4] Semi-supervised clustering with deep metric learning and graph embedding
    Li, Xiaocui
    Yin, Hongzhi
    Zhou, Ke
    Zhou, Xiaofang
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2020, 23 (02): : 781 - 798
  • [5] Learning Flexible Graph-Based Semi-Supervised Embedding
    Dornaika, Fadi
    El Traboulsi, Youssof
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 206 - 218
  • [6] Graph Stochastic Neural Networks for Semi-supervised Learning
    Wang, Haibo
    Zhou, Chuan
    Chen, Xin
    Wu, Jia
    Pan, Shirui
    Wang, Jilong
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [7] Semi-supervised Learning with Graph Learning-Convolutional Networks
    Jiang, Bo
    Zhang, Ziyan
    Lin, Doudou
    Tang, Jin
    Luo, Bin
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11305 - 11312
  • [8] Deep Semi-Supervised Learning via Dynamic Anchor Graph Embedding Learning
    Wang, Zihao
    Tu, Enmei
    Lee, Zhicheng
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [9] A semi-supervised model for knowledge graph embedding
    Jia Zhu
    Zetao Zheng
    Min Yang
    Gabriel Pui Cheong Fung
    Yong Tang
    [J]. Data Mining and Knowledge Discovery, 2020, 34 : 1 - 20
  • [10] A semi-supervised model for knowledge graph embedding
    Zhu, Jia
    Zheng, Zetao
    Yang, Min
    Fung, Gabriel Pui Cheong
    Tang, Yong
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (01) : 1 - 20