BertSRC: transformer-based semantic relation classification

被引:5
|
作者
Lee, Yeawon [1 ]
Son, Jinseok [2 ]
Song, Min [1 ]
机构
[1] Yonsei Univ, Dept Lib & Informat Sci, Seoul, South Korea
[2] Yonsei Univ, Dept Digital Analyt, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Relation extraction; Semantic relation classification; Corpus construction; Annotation method; Deep learning; BERT; Fine-tuning; RELATION EXTRACTION; CORPUS;
D O I
10.1186/s12911-022-01977-5
中图分类号
R-058 [];
学科分类号
摘要
The relationship between biomedical entities is complex, and many of them have not yet been identified. For many biomedical research areas including drug discovery, it is of paramount importance to identify the relationships that have already been established through a comprehensive literature survey. However, manually searching through literature is difficult as the amount of biomedical publications continues to increase. Therefore, the relation classification task, which automatically mines meaningful relations from the literature, is spotlighted in the field of biomedical text mining. By applying relation classification techniques to the accumulated biomedical literature, existing semantic relations between biomedical entities that can help to infer previously unknown relationships are efficiently grasped. To develop semantic relation classification models, which is a type of supervised machine learning, it is essential to construct a training dataset that is manually annotated by biomedical experts with semantic relations among biomedical entities. Any advanced model must be trained on a dataset with reliable quality and meaningful scale to be deployed in the real world and can assist biologists in their research. In addition, as the number of such public datasets increases, the performance of machine learning algorithms can be accurately revealed and compared by using those datasets as a benchmark for model development and improvement. In this paper, we aim to build such a dataset. Along with that, to validate the usability of the dataset as training data for relation classification models and to improve the performance of the relation extraction task, we built a relation classification model based on Bidirectional Encoder Representations from Transformers (BERT) trained on our dataset, applying our newly proposed fine-tuning methodology. In experiments comparing performance among several models based on different deep learning algorithms, our model with the proposed fine-tuning methodology showed the best performance. The experimental results show that the constructed training dataset is an important information resource for the development and evaluation of semantic relation extraction models. Furthermore, relation extraction performance can be improved by integrating our proposed fine-tuning methodology. Therefore, this can lead to the promotion of future text mining research in the biomedical field.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] An improved transformer-based concrete crack classification method
    Ye, Guanting
    Dai, Wei
    Tao, Jintai
    Qu, Jinsheng
    Zhu, Lin
    Jin, Qiang
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [32] MPT-SFANet: Multiorder Pooling Transformer-Based Semantic Feature Aggregation Network for SAR Image Classification
    Ni, Kang
    Yuan, Chunyang
    Zheng, Zhizhong
    Zhang, Bingbing
    Wang, Peng
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (04) : 4923 - 4938
  • [33] Transformer-Based Decoder Designs for Semantic Segmentation on Remotely Sensed Images
    Panboonyuen, Teerapong
    Jitkajornwanich, Kulsawasd
    Lawawirojwong, Siam
    Srestasathiern, Panu
    Vateekul, Peerapon
    REMOTE SENSING, 2021, 13 (24)
  • [34] Evaluating Transformer-based Semantic Segmentation Networks for Pathological Image Segmentation
    Cam Nguyen
    Asad, Zuhayr
    Deng, Ruining
    Huo, Yuankai
    MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032
  • [35] Transformer-based automated segmentation of recycling materials for semantic understanding in construction
    Wang, Xin
    Han, Wei
    Mo, Sicheng
    Cai, Ting
    Gong, Yijing
    Li, Yin
    Zhu, Zhenhua
    AUTOMATION IN CONSTRUCTION, 2023, 154
  • [36] Transformer-based Joint Source Channel Coding for Textual Semantic Communication
    Liu, Shicong
    Gao, Zhen
    Chen, Gaojie
    Su, Yu
    Peng, Lu
    arXiv, 2023,
  • [37] Transformer-based Language Models for Semantic Search and Mobile Applications Retrieval
    Coelho, Joao
    Neto, Antonio
    Tavares, Miguel
    Coutinho, Carlos
    Oliveira, Joao
    Ribeiro, Ricardo
    Batista, Fernando
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (KDIR), VOL 1:, 2021, : 225 - 232
  • [38] Semantic Parameter Matching in Web APIs with Transformer-based Question Answering
    Kotstein, Sebastian
    Decker, Christian
    2023 IEEE INTERNATIONAL CONFERENCE ON SERVICE-ORIENTED SYSTEM ENGINEERING, SOSE, 2023, : 114 - 123
  • [39] An Extensive Study of the Structure Features in Transformer-based Code Semantic Summarization
    Yang, Kang
    Mao, Xinjun
    Wang, Shangwen
    Qin, Yihao
    Zhang, Tanghaoran
    Lu, Yao
    Al-Sabahi, Kamal
    2023 IEEE/ACM 31ST INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION, ICPC, 2023, : 89 - 100
  • [40] tSF: Transformer-Based Semantic Filter for Few-Shot Learning
    Lai, Jinxiang
    Yang, Siqian
    Liu, Wenlong
    Zeng, Yi
    Huang, Zhongyi
    Wu, Wenlong
    Liu, Jun
    Gao, Bin-Bin
    Wang, Chengjie
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 1 - 19