BertSRC: transformer-based semantic relation classification

被引:5
|
作者
Lee, Yeawon [1 ]
Son, Jinseok [2 ]
Song, Min [1 ]
机构
[1] Yonsei Univ, Dept Lib & Informat Sci, Seoul, South Korea
[2] Yonsei Univ, Dept Digital Analyt, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Relation extraction; Semantic relation classification; Corpus construction; Annotation method; Deep learning; BERT; Fine-tuning; RELATION EXTRACTION; CORPUS;
D O I
10.1186/s12911-022-01977-5
中图分类号
R-058 [];
学科分类号
摘要
The relationship between biomedical entities is complex, and many of them have not yet been identified. For many biomedical research areas including drug discovery, it is of paramount importance to identify the relationships that have already been established through a comprehensive literature survey. However, manually searching through literature is difficult as the amount of biomedical publications continues to increase. Therefore, the relation classification task, which automatically mines meaningful relations from the literature, is spotlighted in the field of biomedical text mining. By applying relation classification techniques to the accumulated biomedical literature, existing semantic relations between biomedical entities that can help to infer previously unknown relationships are efficiently grasped. To develop semantic relation classification models, which is a type of supervised machine learning, it is essential to construct a training dataset that is manually annotated by biomedical experts with semantic relations among biomedical entities. Any advanced model must be trained on a dataset with reliable quality and meaningful scale to be deployed in the real world and can assist biologists in their research. In addition, as the number of such public datasets increases, the performance of machine learning algorithms can be accurately revealed and compared by using those datasets as a benchmark for model development and improvement. In this paper, we aim to build such a dataset. Along with that, to validate the usability of the dataset as training data for relation classification models and to improve the performance of the relation extraction task, we built a relation classification model based on Bidirectional Encoder Representations from Transformers (BERT) trained on our dataset, applying our newly proposed fine-tuning methodology. In experiments comparing performance among several models based on different deep learning algorithms, our model with the proposed fine-tuning methodology showed the best performance. The experimental results show that the constructed training dataset is an important information resource for the development and evaluation of semantic relation extraction models. Furthermore, relation extraction performance can be improved by integrating our proposed fine-tuning methodology. Therefore, this can lead to the promotion of future text mining research in the biomedical field.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A Transformer-Based Framework for Payload Malware Detection and Classification
    Stein, Kyle
    Mahyari, Arash
    Francia, Guillermo, III
    El-Sheikh, Eman
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0105 - 0111
  • [22] Transformer-based temporal sequence learners for arrhythmia classification
    Varghese, Ann
    Kamal, Suraj
    Kurian, James
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (08) : 1993 - 2000
  • [23] PARASITIC EGG DETECTION AND CLASSIFICATION WITH TRANSFORMER-BASED ARCHITECTURES
    Pedraza, Anibal
    Ruiz-Santaquiteria, Jesus
    Deniz, Oscar
    Bueno, Gloria
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4301 - 4305
  • [24] Classification of hyperspectral and LiDAR data by transformer-based enhancement
    Pan, Jiechen
    Shuai, Xing
    Xu, Qing
    Dai, Mofan
    Zhang, Guoping
    Wang, Guo
    REMOTE SENSING LETTERS, 2024, 15 (10) : 1074 - 1084
  • [25] An improved transformer-based concrete crack classification method
    Guanting Ye
    Wei Dai
    Jintai Tao
    Jinsheng Qu
    Lin Zhu
    Qiang Jin
    Scientific Reports, 14
  • [26] TRANSFORMER-BASED DOMAIN ADAPTATION FOR EVENT DATA CLASSIFICATION
    Zhao, Junwei
    Zhang, Shiliang
    Huang, Tiejun
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 4673 - 4677
  • [27] Transformer-based Pouranic topic classification in Indian mythology
    Paul, Apurba
    Seal, Srijan
    Das, Dipankar
    Sadhana - Academy Proceedings in Engineering Sciences, 2024, 49 (04)
  • [28] Transformer-based Architecture for Empathy Prediction and Emotion Classification
    Vasava, Himil
    Uikey, Pramegh
    Wasnik, Gaurav
    Sharma, Raksha
    PROCEEDINGS OF THE 12TH WORKSHOP ON COMPUTATIONAL APPROACHES TO SUBJECTIVITY, SENTIMENT & SOCIAL MEDIA ANALYSIS, 2022, : 261 - 264
  • [29] Transformer-based temporal sequence learners for arrhythmia classification
    Ann Varghese
    Suraj Kamal
    James Kurian
    Medical & Biological Engineering & Computing, 2023, 61 : 1993 - 2000
  • [30] Transformer-Based Classification of User Queries for Medical Consultancy
    Lyutkin, D. A.
    Pozdnyakov, D. V.
    Soloviev, A. A.
    Zhukov, D. V.
    Malik, M. S. I.
    Ignatov, D. I.
    AUTOMATION AND REMOTE CONTROL, 2024, 85 (03) : 297 - 308