CRITICAL VALUES OF HOMOLOGY CLASSES OF LOOPS AND POSITIVE CURVATURE

被引:1
|
作者
Rademacher, Hans-Bert [1 ]
机构
[1] Univ Leipzig, Math Inst, D-04081 Leipzig, Germany
关键词
Geodesic loops; loop space; free loop space; Morse theory; positive sectional curvature; EXISTENCE; THEOREMS; MORSE;
D O I
10.4310/jdg/1631124316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study compact and simply-connected Riemannian manifolds (M, g) with positive sectional curvature K >= 1. For a nontrivial homology class of lowest positive dimension in the space of loops based at a point p is an element of M or in the free loop space one can define a critical length crl(p) (M, g) resp. crl (M, g). Then crl(p) (M, g) equals the length of a geodesic loop with base point p and crl (M, g) equals the length of a closed geodesic. This is the idea of the proof of the existence of a closed geodesic of positive length presented by Birkhoff in case of a sphere and by Lusternik & Fet in the general case. It is the main result of the paper that the numbers crl(p) (M, g) resp. crl (M, g) attain its maximal value 2 pi only for the round metric on the n-sphere. Under the additional assumption K <= 4 this result for crl (M, g) follows from results by Sugimoto in even dimensions and Ballmann, Thorbergsson & Ziller in odd dimensions.
引用
收藏
页码:141 / 159
页数:19
相关论文
共 50 条
  • [41] Systolic volume of homology classes
    Babenko, Ivan
    Balacheff, Florent
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (02): : 733 - 767
  • [42] CHERN CLASSES IN CRYSTALO HOMOLOGY
    BERTHELOT, P
    ILLUSIE, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (26): : 1750 - +
  • [43] CLOSED ORBITS IN HOMOLOGY CLASSES
    KATSUDA, A
    SUNADA, T
    PUBLICATIONS MATHEMATIQUES, 1990, (71): : 5 - 32
  • [44] Positive solutions of the prescribed mean curvature equation with exponential critical growth
    Figueiredo, Giovany M.
    Radulescu, Vicentiu D.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (05) : 2213 - 2233
  • [45] POSITIVE CURVATURE IN PERPENDICULAR CRITICAL FIELD OF HIGH-TEMPERATURE SUPERCONDUCTORS
    Ledvij, Marko
    Dobrosavljevic-Grujic, Ljiljana
    MODERN PHYSICS LETTERS B, 1990, 4 (07): : 471 - 477
  • [46] POSITIVE CURVATURE IN THE UPPER CRITICAL-FIELD OF HEAVY FERMION SUPERCONDUCTORS
    DELONG, LE
    TOGLIATTI, D
    LEHMAN, GW
    KWOK, WK
    CRABTREE, GW
    VANDERVOORT, KG
    HINKS, DG
    PHYSICA B-CONDENSED MATTER, 1990, 163 (1-3) : 499 - 503
  • [47] Positive solutions of the prescribed mean curvature equation with exponential critical growth
    Giovany M. Figueiredo
    Vicenţiu D. Rădulescu
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 2213 - 2233
  • [48] Wheel graph homology classes via Lie graph homology
    Ward, Benjamin C.
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2023, 17 (02) : 693 - 717
  • [49] Homology and homotopy complexity in negative curvature
    Bader, Uri
    Gelander, Tsachik
    Sauer, Roman
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (08) : 2537 - 2571