CRITICAL VALUES OF HOMOLOGY CLASSES OF LOOPS AND POSITIVE CURVATURE

被引:1
|
作者
Rademacher, Hans-Bert [1 ]
机构
[1] Univ Leipzig, Math Inst, D-04081 Leipzig, Germany
关键词
Geodesic loops; loop space; free loop space; Morse theory; positive sectional curvature; EXISTENCE; THEOREMS; MORSE;
D O I
10.4310/jdg/1631124316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study compact and simply-connected Riemannian manifolds (M, g) with positive sectional curvature K >= 1. For a nontrivial homology class of lowest positive dimension in the space of loops based at a point p is an element of M or in the free loop space one can define a critical length crl(p) (M, g) resp. crl (M, g). Then crl(p) (M, g) equals the length of a geodesic loop with base point p and crl (M, g) equals the length of a closed geodesic. This is the idea of the proof of the existence of a closed geodesic of positive length presented by Birkhoff in case of a sphere and by Lusternik & Fet in the general case. It is the main result of the paper that the numbers crl(p) (M, g) resp. crl (M, g) attain its maximal value 2 pi only for the round metric on the n-sphere. Under the additional assumption K <= 4 this result for crl (M, g) follows from results by Sugimoto in even dimensions and Ballmann, Thorbergsson & Ziller in odd dimensions.
引用
收藏
页码:141 / 159
页数:19
相关论文
共 50 条
  • [21] GEODESICS IN HOMOLOGY CLASSES
    PHILLIPS, R
    SARNAK, P
    DUKE MATHEMATICAL JOURNAL, 1987, 55 (02) : 287 - 297
  • [22] Quantifying homology classes
    Chen, Chao
    Freedman, Daniel
    STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2008, : 169 - 180
  • [23] LOCAL HOMOLOGY, KOSZUL HOMOLOGY AND SERRE CLASSES
    Divaani-Aazar, Kamran
    Faridian, Hossein
    Tousi, Massoud
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (06) : 1841 - 1869
  • [24] Rho-classes, index theory and Stolz' positive scalar curvature sequence
    Piazza, Paolo
    Schick, Thomas
    JOURNAL OF TOPOLOGY, 2014, 7 (04) : 965 - 1004
  • [25] The Gromoll filtration, KO-characteristic classes and metrics of positive scalar curvature
    Crowley, Diarmuid
    Schick, Thomas
    GEOMETRY & TOPOLOGY, 2013, 17 (03) : 1773 - 1789
  • [26] Relative torsion and bordism classes of positive scalar curvature metrics on manifolds with boundary
    Simone Cecchini
    Mehran Seyedhosseini
    Vito Felice Zenobi
    Mathematische Zeitschrift, 2023, 305
  • [27] Relative torsion and bordism classes of positive scalar curvature metrics on manifolds with boundary
    Cecchini, Simone
    Seyedhosseini, Mehran
    Zenobi, Vito Felice
    MATHEMATISCHE ZEITSCHRIFT, 2023, 305 (03)
  • [28] Global curvature for rectifiable loops
    Schuricht, F
    von der Mosel, H
    MATHEMATISCHE ZEITSCHRIFT, 2003, 243 (01) : 37 - 77
  • [29] Global curvature for rectifiable loops
    F. Schuricht
    H. von der Mosel
    Mathematische Zeitschrift, 2003, 243 : 37 - 77
  • [30] On the Geodesic Curvature of Riemannian Loops
    Veeravalli A.R.
    Results in Mathematics, 2001, 39 (3-4) : 353 - 356