Link homology and Frobenius extensions II

被引:6
|
作者
Khovanov, Mikhail [1 ]
Robert, Louis-Hadrien [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Univ Luxembourg, Fac Sci Technol & Med, 6 Ave Fonte, L-4365 Esch Sur Alzette, Luxembourg
基金
瑞士国家科学基金会;
关键词
Frobenius extensions; seamed surfaces; universal construction; KHOVANOV HOMOLOGY; TANGLE;
D O I
10.4064/fm912-6-2021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The first two sections of the paper provide a convenient scheme and addi-tional diagrammatics for working with Frobenius extensions responsible for key flavors of equivariant SL(2) link homology theories. The goal is to clarify some basic structures in the theory and propose a setup to work over sufficiently non-degenerate base rings. The third section works out two related SL(2) evaluations for seamed surfaces.
引用
收藏
页码:1 / 46
页数:46
相关论文
共 50 条
  • [1] Link homology and Frobenius extensions
    Khovanov, Mikhail
    FUNDAMENTA MATHEMATICAE, 2006, 190 : 179 - 190
  • [2] FROBENIUS HOMOLOGY
    ANDRE, M
    MATHEMATISCHE ANNALEN, 1991, 290 (01) : 129 - 181
  • [3] On dihedral extensions and frobenius extensions
    Imaoka, M
    Kishi, Y
    GALOIS THEORY AND MODULAR FORMS, 2004, 11 : 195 - 220
  • [4] Matrix factorizations and link homology II
    Khovanov, Mikhail
    Rozansky, Lev
    GEOMETRY & TOPOLOGY, 2008, 12 : 1387 - 1425
  • [5] Frobenius extensions of corings
    Iovanov, Miodrag Cristian
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (03) : 869 - 892
  • [6] Are biseparable extensions Frobenius?
    Caenepeel, S
    Kadison, L
    K-THEORY, 2001, 24 (04): : 361 - 383
  • [7] On cubes of Frobenius extensions
    Elias, Ben
    Snyder, Noah
    Williamson, Geordie
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 171 - 186
  • [8] Extensions for Frobenius kernels
    Bendel, CP
    Nakano, DK
    Pillen, C
    JOURNAL OF ALGEBRA, 2004, 272 (02) : 476 - 511
  • [9] ARITHMETIC IN FROBENIUS EXTENSIONS
    STECKEL, HD
    MANUSCRIPTA MATHEMATICA, 1982, 39 (2-3) : 359 - 385
  • [10] Transfer results for Frobenius extensions
    Launois, Stephane
    Topley, Lewis
    JOURNAL OF ALGEBRA, 2019, 524 : 35 - 58