Are biseparable extensions Frobenius?

被引:18
|
作者
Caenepeel, S
Kadison, L
机构
[1] Free Univ Brussels, Fac Sci Appl, B-1050 Brussels, Belgium
[2] Gothenburg Univ, Inst Matemat, S-41296 Gothenburg, Sweden
来源
K-THEORY | 2001年 / 24卷 / 04期
关键词
biseparable bimodule; Frobenius bimodule; separable functor; Frobenius functor;
D O I
10.1023/A:1014039026760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Secion 1 we describe what is known of the extent to which a separable extension of unital associative rings is a Frobenius extension. A problem of this kind is suggested by asking if three algebraic axioms for finite Jones index subfactors are dependent. In Section 2 the problem in the title is formulated in terms of separable bimodules. In Section 3 we specialize the problem to ring extensions, noting that a biseparable extension is a two-sided finitely generated projective, split, separable extension. Some reductions of the problem are discussed and solutions in special cases are provided. In Section 4 various examples are provided of projective separable extensions that are neither finitely generated nor Frobenius and which give obstructions to weakening the hypotheses of the question in the title. In Section 5 we show that characterizations of the separable extensions among Frobenius extensions are special cases of a result for adjoint functors.
引用
收藏
页码:361 / 383
页数:23
相关论文
共 50 条
  • [1] Biseparable extensions are not necessarily Frobenius
    José Gómez-Torrecillas
    F. J. Lobillo
    Gabriel Navarro
    José Patricio Sánchez-Hernández
    Mathematische Zeitschrift, 2021, 297 : 517 - 533
  • [2] Biseparable extensions are not necessarily Frobenius
    Gomez-Torrecillas, Jose
    Lobillo, F. J.
    Navarro, Gabriel
    Patricio Sanchez-Hernandez, Jose
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 517 - 533
  • [3] On dihedral extensions and frobenius extensions
    Imaoka, M
    Kishi, Y
    GALOIS THEORY AND MODULAR FORMS, 2004, 11 : 195 - 220
  • [4] Frobenius extensions of corings
    Iovanov, Miodrag Cristian
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (03) : 869 - 892
  • [5] On cubes of Frobenius extensions
    Elias, Ben
    Snyder, Noah
    Williamson, Geordie
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 171 - 186
  • [6] Extensions for Frobenius kernels
    Bendel, CP
    Nakano, DK
    Pillen, C
    JOURNAL OF ALGEBRA, 2004, 272 (02) : 476 - 511
  • [7] ARITHMETIC IN FROBENIUS EXTENSIONS
    STECKEL, HD
    MANUSCRIPTA MATHEMATICA, 1982, 39 (2-3) : 359 - 385
  • [8] Transfer results for Frobenius extensions
    Launois, Stephane
    Topley, Lewis
    JOURNAL OF ALGEBRA, 2019, 524 : 35 - 58
  • [9] Frobenius extensions and tilting complexes
    Abe, Hiroki
    Hoshino, Mitsuo
    ALGEBRAS AND REPRESENTATION THEORY, 2008, 11 (03) : 215 - 232
  • [10] Extensions of Perron–Frobenius theory
    Niushan Gao
    Positivity, 2013, 17 : 965 - 977