Are biseparable extensions Frobenius?

被引:18
|
作者
Caenepeel, S
Kadison, L
机构
[1] Free Univ Brussels, Fac Sci Appl, B-1050 Brussels, Belgium
[2] Gothenburg Univ, Inst Matemat, S-41296 Gothenburg, Sweden
来源
K-THEORY | 2001年 / 24卷 / 04期
关键词
biseparable bimodule; Frobenius bimodule; separable functor; Frobenius functor;
D O I
10.1023/A:1014039026760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Secion 1 we describe what is known of the extent to which a separable extension of unital associative rings is a Frobenius extension. A problem of this kind is suggested by asking if three algebraic axioms for finite Jones index subfactors are dependent. In Section 2 the problem in the title is formulated in terms of separable bimodules. In Section 3 we specialize the problem to ring extensions, noting that a biseparable extension is a two-sided finitely generated projective, split, separable extension. Some reductions of the problem are discussed and solutions in special cases are provided. In Section 4 various examples are provided of projective separable extensions that are neither finitely generated nor Frobenius and which give obstructions to weakening the hypotheses of the question in the title. In Section 5 we show that characterizations of the separable extensions among Frobenius extensions are special cases of a result for adjoint functors.
引用
收藏
页码:361 / 383
页数:23
相关论文
共 50 条
  • [21] SEMIGROUP RING CONSTRUCTION OF FROBENIUS EXTENSIONS
    SATO, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1981, 324 : 211 - 220
  • [22] Gorenstein projective modules and Frobenius extensions
    Wei Ren
    Science China Mathematics, 2018, 61 : 1175 - 1186
  • [23] GORENSTEIN MODULES UNDER FROBENIUS EXTENSIONS
    Kong, Fangdi
    Wu, Dejun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (06) : 1567 - 1579
  • [24] Extensions of Perron-Frobenius theory
    Gao, Niushan
    POSITIVITY, 2013, 17 (04) : 965 - 977
  • [25] A note on quasi-Frobenius extensions
    Kitamura, Y
    ARCHIV DER MATHEMATIK, 2002, 78 (01) : 8 - 11
  • [26] Generalized tilting modules and Frobenius extensions
    Fu, Dongxing
    Xu, Xiaowei
    Zhao, Zhibing
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (09): : 3337 - 3350
  • [27] A note on quasi-Frobenius extensions
    Y. Kitamura
    Archiv der Mathematik, 2002, 78 : 8 - 11
  • [28] Gorenstein projective modules and Frobenius extensions
    Ren, Wei
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (07) : 1175 - 1186
  • [29] On Frobenius extensions of the centralizer matrix algebras
    Zhu, Ruipeng
    ARCHIV DER MATHEMATIK, 2023, 121 (03) : 241 - 243
  • [30] Link homology and Frobenius extensions II
    Khovanov, Mikhail
    Robert, Louis-Hadrien
    FUNDAMENTA MATHEMATICAE, 2022, 256 (01) : 1 - 46