Link homology and Frobenius extensions II

被引:6
|
作者
Khovanov, Mikhail [1 ]
Robert, Louis-Hadrien [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Univ Luxembourg, Fac Sci Technol & Med, 6 Ave Fonte, L-4365 Esch Sur Alzette, Luxembourg
基金
瑞士国家科学基金会;
关键词
Frobenius extensions; seamed surfaces; universal construction; KHOVANOV HOMOLOGY; TANGLE;
D O I
10.4064/fm912-6-2021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The first two sections of the paper provide a convenient scheme and addi-tional diagrammatics for working with Frobenius extensions responsible for key flavors of equivariant SL(2) link homology theories. The goal is to clarify some basic structures in the theory and propose a setup to work over sufficiently non-degenerate base rings. The third section works out two related SL(2) evaluations for seamed surfaces.
引用
收藏
页码:1 / 46
页数:46
相关论文
共 50 条