Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steel

被引:15
|
作者
Escobar, J. D. [1 ]
Delfino, P. M. [1 ]
Ariza-Echeverri, E. A. [1 ,2 ]
Carvalho, F. M. [3 ]
Schell, N. [4 ]
Stark, A. [4 ]
Rodrigues, T. A. [5 ]
Oliveira, J. P. [5 ]
Avila, J. A. [6 ]
Goldenstein, H. [1 ]
Tschiptschin, A. P. [1 ]
机构
[1] Univ Sao Paulo, Met & Mat Engn Dept, Av Prof Mello Moraes 2463, Sao Paulo, Brazil
[2] Univ Tecnolag Pereira, Escuela Tecnol Mecan, Carrera 27 10-02 Alamos, Pereira, Colombia
[3] Inst Technol Res, Met Proc Lab, Av Prof Almeida Prado 532, Sao Paulo, Brazil
[4] Helmholtz Zentrum Hereon, Inst Mat Phys, Max Planck Str 1, D-21502 Geesthacht, Germany
[5] Univ NOVA Lisboa, NOVA Sch Sci & Technol, Dept Mech & Ind Engn, UNIDEMI, P-2829516 Caparica, Portugal
[6] Sao Paulo State Univ, UNESP, Campus Sao Joao da Boa Vista, Sao Joao Da Boa Vista, SP, Brazil
基金
巴西圣保罗研究基金会; 欧盟地平线“2020”;
关键词
Synchrotron X-ray diffraction; Fire-resistant steel; Secondary cementite; Retained austenite; MECHANICAL-PROPERTIES; CARBON-STEEL; BEHAVIOR; MICROSTRUCTURE; PRECIPITATION; STRENGTH; DECOMPOSITION;
D O I
10.1016/j.matchar.2021.111567
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the kinetics of microstructural degradation during the event of a fire is of major relevance to future optimization of fire-resistant steels (FRS). In this work, we use in situ synchrotron X-ray diffraction to assess the rapid thermally-assisted degradation of different starting microstructures, such as (i) ferrite + pearlite; (ii) bainite + retained austenite, and (iii) martensite + retained austenite, during the simulation of a fire cycle in a Fe-0.13C-0.11Cr-0.38Mo-0.04V FRS. Our results show that retained austenite is the most unstable phase, especially when generated by faster cooling rates, decomposing at temperatures as low as 180 degrees C during fire simulations. Bainite and martensite are both unstable and undergo recovery and carbon desaturation via secondary precipitation of cementite. However, bainite is comparatively more stable than martensite since its decomposition starts at 400 degrees C, while for martensite it occurs at 320 degrees C. We also present a methodology to deconvolute the effect of temperature on the increased background and signal intensities of the X-ray spectra, allowing the direct observation of the kinetics of secondary cementite precipitation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] FIRE RESISTANCE OF FIRE-RESISTANT STEEL COLUMNS
    SAKUMOTO, Y
    YAMAGUCHI, T
    OKADA, T
    YOSHIDA, M
    TASAKA, S
    SAITO, H
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1994, 120 (04): : 1103 - 1121
  • [2] Parametric studies on fire resistance of fire-resistant steel members
    Ding, J
    Li, GQ
    Sakumoto, Y
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2004, 60 (07) : 1007 - 1027
  • [3] Experimental analysis of fire-resistant and non-fire-resistant steel beams
    Jordao, Alexandre Magnus
    Scabbia, Andre Luiz Gonsalves
    Pignatta e Silva, Valdir
    Campello, Eduardo de Morais Barreto
    Ariza, Edwan Anderson
    FIRE SAFETY JOURNAL, 2023, 138
  • [4] Fire resistance of steel beams with integrated fire-resistant and decorative constructions
    Chu, Chengyi
    Ye, Xunan
    Fu, Bo
    Zhang, Lei
    Gao, Wang
    Fan, Dongdong
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2024, 223
  • [5] A practical approach for fire safety design of fire-resistant steel members
    Li, GQ
    Ding, J
    Sakumoto, Y
    STEEL AND COMPOSITE STRUCTURES, 2005, 5 (01): : 71 - 86
  • [6] Review of research and applications of fire-resistant steel
    Wan, Wei-Guo
    Wu, Jie-Cai
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2006, 9 (02): : 183 - 189
  • [7] Microstructure evolution and fire-resistant properties of 690 MPa anti-seismic fire-resistant steel plate
    Lu, Chunxiang
    Lin, Tianzi
    Cao, Jianchun
    Yin, Shubiao
    Gao, Peng
    Liu, Xing
    Zhan, Fang
    MATERIALS RESEARCH EXPRESS, 2021, 8 (06)
  • [8] Effects of normalizing and tempering temperature on the bainite microstructure and properties of low alloy fire-resistant steel bars
    Zheng, Zhichao
    Ren, Jie
    Zhang, Li
    Guan, Lanfang
    Liu, Chengzhi
    Liu, Yanlian
    Cheng, Shengwei
    Su, Zexing
    Yang, Fei
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 2024, 43 (01)
  • [9] Fire-resistant steels
    Walp, MS
    Speer, JG
    Matlock, DK
    ADVANCED MATERIALS & PROCESSES, 2004, 162 (10): : 34 - 36
  • [10] Fire-resistant nanocomposites
    Giannelis, EP
    ANTEC '96: PLASTICS - RACING INTO THE FUTURE, VOLS I-III: VOL I: PROCESSING; VOL II: MATERIALS; VOL III: SPACIAL AREAS, 1996, 42 : 2998 - 3003