Role of chaos in one-dimensional heat conductivity

被引:10
|
作者
Mao, JW [1 ]
Li, YQ
Ji, YY
机构
[1] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China
[2] Huzhou Teachers Coll, Dept Phys, Huzhou 313000, Peoples R China
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 06期
关键词
D O I
10.1103/PhysRevE.71.061202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the heat conduction in a quasi-one-dimensional gas model with various degrees of chaos. Our calculations indicate that the heat conductivity kappa is independent of system size when the chaos of the channel is strong enough. The different diffusion behaviors for the cases of chaotic and nonchaotic channels are also studied. The numerical results of divergent exponent alpha of heat conduction and diffusion exponent beta are consistent with the formula alpha = 2-2/beta. We explore the temperature profiles numerically and analytically, which show that the temperature jump is primarily attributed to superdiffusion for both nonchaotic and chaotic cases, and for the latter case of superdiffusion the finite size affects the value of beta remarkably.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Inverse method for estimating thermal conductivity in one-dimensional heat conduction problems
    Lin, JH
    Chen, CK
    Yang, YT
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2001, 15 (01) : 34 - 41
  • [32] Chaos in One-dimensional Piecewise Smooth Dynamical Systems
    Mehdi Pourbarat
    Neda Abbasi
    Roya Makrooni
    Mohammad Reza Molaei
    Journal of Dynamical and Control Systems, 2023, 29 : 1271 - 1285
  • [33] Adaptation to the edge of chaos in one-dimensional chaotic maps
    Ando, Hiroyasu
    Aihara, Kazuyuki
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [34] Specific heat of a one-dimensional interacting Fermi system: Role of anomalies
    Chubukov, Andrey V.
    Maslov, Dmitrii L.
    Saha, Ronojoy
    PHYSICAL REVIEW B, 2008, 77 (08)
  • [35] PERIODICITY AND CHAOS IN A ONE-DIMENSIONAL DYNAMICAL MODEL OF EARTHQUAKES
    XU, HJ
    KNOPOFF, L
    PHYSICAL REVIEW E, 1994, 50 (05): : 3577 - 3581
  • [36] MATRIX MODELS, ONE-DIMENSIONAL FERMIONS, AND QUANTUM CHAOS
    SIMONS, BD
    LEE, PA
    ALTSHULER, BL
    PHYSICAL REVIEW LETTERS, 1994, 72 (01) : 64 - 67
  • [37] Chaos in one-dimensional granular flows with oscillating boundaries
    Blackmore, D
    Dave, R
    POWDERS & GRAINS 97, 1997, : 409 - 412
  • [38] One-dimensional quantum chaos: Explicitly solvable cases
    Yu. Dabaghian
    R. V. Jensen
    R. Blümel
    Journal of Experimental and Theoretical Physics Letters, 2001, 74 : 235 - 239
  • [39] STATIC CONDUCTIVITY OF ONE-DIMENSIONAL DISORDERED SYSTEMS
    BYCHKOV, YA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1976, 27 (01) : 376 - 379
  • [40] PEARSON-WALK VISUALIZATION OF THE ONE-DIMENSIONAL CHAOS
    NAGAI, Y
    ICHIMURA, A
    TSUCHIYA, T
    PHYSICA A, 1985, 134 (01): : 123 - 154