Role of chaos in one-dimensional heat conductivity

被引:10
|
作者
Mao, JW [1 ]
Li, YQ
Ji, YY
机构
[1] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China
[2] Huzhou Teachers Coll, Dept Phys, Huzhou 313000, Peoples R China
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 06期
关键词
D O I
10.1103/PhysRevE.71.061202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the heat conduction in a quasi-one-dimensional gas model with various degrees of chaos. Our calculations indicate that the heat conductivity kappa is independent of system size when the chaos of the channel is strong enough. The different diffusion behaviors for the cases of chaotic and nonchaotic channels are also studied. The numerical results of divergent exponent alpha of heat conduction and diffusion exponent beta are consistent with the formula alpha = 2-2/beta. We explore the temperature profiles numerically and analytically, which show that the temperature jump is primarily attributed to superdiffusion for both nonchaotic and chaotic cases, and for the latter case of superdiffusion the finite size affects the value of beta remarkably.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [21] CONDUCTIVITY MEASUREMENTS ON ONE-DIMENSIONAL SYSTEMS
    MILLER, JS
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1974, 96 (22) : 7131 - 7134
  • [22] Conductivity of one-dimensional phthalocyanine compounds
    Kao Teng Hsueh Hsiao Hua Heush Hsueh Pao, 11 suppl (196):
  • [23] Conductivity of one-dimensional phthalocyanine compounds
    Gao, YM
    Wang, RS
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 1995, 16 (11): : 196 - 198
  • [24] Structure and chaos of a one-dimensional molecular system
    M. A. Guzev
    Yu. G. Izrail’skii
    M. A. Shepelov
    N. A. Permyakov
    Glass Physics and Chemistry, 2008, 34 : 394 - 400
  • [25] Structure and chaos of a one-dimensional molecular system
    Guzev, M. A.
    Izrail'skii, Yu. G.
    Shepelov, M. A.
    Permyakov, N. A.
    GLASS PHYSICS AND CHEMISTRY, 2008, 34 (04) : 394 - 400
  • [26] Strong chaos in one-dimensional quantum system
    Yang, Ciann-Dong
    Wei, Chia-Hung
    CHAOS SOLITONS & FRACTALS, 2008, 37 (04) : 988 - 1001
  • [27] CHAOS AND COHERENCE IN CLASSICAL ONE-DIMENSIONAL MAGNETS
    WYSIN, G
    BISHOP, AR
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1986, 54-7 : 1132 - 1134
  • [28] Effect of noise on chaos in a one-dimensional map
    Yoshimoto, M
    Kurosawa, S
    Nagashima, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (06) : 1924 - 1929
  • [29] One-Dimensional Nonlinear Model for Producing Chaos
    Hua, Zhongyun
    Zhou, Yicong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (01) : 235 - 246
  • [30] Periodicity versus chaos in one-dimensional dynamics
    Thunberg, H
    SIAM REVIEW, 2001, 43 (01) : 3 - 30