Role of chaos in one-dimensional heat conductivity

被引:10
|
作者
Mao, JW [1 ]
Li, YQ
Ji, YY
机构
[1] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China
[2] Huzhou Teachers Coll, Dept Phys, Huzhou 313000, Peoples R China
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 06期
关键词
D O I
10.1103/PhysRevE.71.061202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the heat conduction in a quasi-one-dimensional gas model with various degrees of chaos. Our calculations indicate that the heat conductivity kappa is independent of system size when the chaos of the channel is strong enough. The different diffusion behaviors for the cases of chaotic and nonchaotic channels are also studied. The numerical results of divergent exponent alpha of heat conduction and diffusion exponent beta are consistent with the formula alpha = 2-2/beta. We explore the temperature profiles numerically and analytically, which show that the temperature jump is primarily attributed to superdiffusion for both nonchaotic and chaotic cases, and for the latter case of superdiffusion the finite size affects the value of beta remarkably.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] Universality of one-dimensional heat conductivity
    Mai, Trieu
    Narayan, Onuttom
    PHYSICAL REVIEW E, 2006, 73 (06):
  • [2] Universality of anomalous one-dimensional heat conductivity
    Lepri, S
    Livi, R
    Politi, A
    PHYSICAL REVIEW E, 2003, 68 (06):
  • [3] Heat conductivity of one-dimensional carbon chain in an external potential
    Ge Yong
    Dong Jin-Ming
    CHINESE PHYSICS LETTERS, 2007, 24 (09) : 2609 - 2612
  • [4] LOCALIZED CHAOS IN ONE-DIMENSIONAL HYDROGEN
    HUMM, DC
    SALTZ, D
    NAYFEH, MH
    PHYSICAL REVIEW A, 1990, 42 (03): : 1592 - 1600
  • [5] Chaos in one-dimensional structural mechanics
    Giuseppe Rega
    Valeria Settimi
    Stefano Lenci
    Nonlinear Dynamics, 2020, 102 : 785 - 834
  • [6] CHAOS IN ONE-DIMENSIONAL COLLISION COMPLEXES
    ECKELT, P
    ZIENICKE, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (01): : 153 - 173
  • [7] Chaos in one-dimensional structural mechanics
    Rega, Giuseppe
    Settimi, Valeria
    Lenci, Stefano
    NONLINEAR DYNAMICS, 2020, 102 (02) : 785 - 834
  • [8] Chaos in a one-dimensional compressible flow
    Gerig, Austin
    Hubler, Alfred
    PHYSICAL REVIEW E, 2007, 75 (04):
  • [9] Chaos in the one-dimensional wave equation
    Solis, FJ
    Jódar, L
    Chen, B
    APPLIED MATHEMATICS LETTERS, 2005, 18 (01) : 85 - 90
  • [10] Suppression of chaos in a one-dimensional mapping
    Codreanu, S
    Danca, M
    JOURNAL OF BIOLOGICAL PHYSICS, 1997, 23 (01) : 1 - 9