ANNz2-Photometric redshift and probability density function estimation using machine-learning

被引:1
|
作者
Sadeh, Iftach [1 ]
机构
[1] UCL, Dept Phys & Astron, Astrophys Grp, Gower St, London WC1E 6BT, England
来源
关键词
techniques: photometric; galaxies: distances and redshifts;
D O I
10.1017/S1743921314010849
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Large photometric galaxy surveys allow the study of questions at the forefront of science, such as the nature of dark energy. The success of such surveys depends on the ability to measure the photometric redshifts of objects (photo-zs), based on limited spectral data. A new major version of the public photo-z estimation software, ANNz, is presented here. The new code incorporates several machine-learning methods, such as artificial neural networks and boosted decision/ regression trees, which are all used in concert. The objective of the algorithm is to dynamically optimize the performance of the photo-z estimation, and to properly derive the associated uncertainties. In addition to single-value solutions, the new code also generates full probability density functions in two independent ways.
引用
收藏
页码:316 / 318
页数:3
相关论文
共 50 条
  • [31] Wind Power Density Estimation Using Rayleigh Probability Distribution Function
    Murthy, K. S. R.
    Rahi, O. P.
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 265 - 275
  • [32] Estimation of Parameters on Probability Density Function Using Enhanced GLUE Approach
    Alduais, Fuad S.
    Sayed-Ahmed, Neveen
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [33] Estimation of acceleration probability density function for parametric rolling using PLIM
    Maruyama, Yuuki
    Maki, Atsuo
    Dostal, Leo
    Umeda, Naoya
    OCEAN ENGINEERING, 2023, 280
  • [34] Estimation of Parameters on Probability Density Function Using Enhanced GLUE Approach
    Alduais, Fuad S.
    Sayed-Ahmed, Neveen
    Computational Intelligence and Neuroscience, 2022, 2022
  • [35] Bit error rate estimation using probability density function estimators
    Laster, JD
    Reed, JH
    Tranter, WH
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2003, 52 (01) : 260 - 267
  • [36] Improving Photometric Redshifts by Merging Probability Density Functions from Template-Based and Machine Learning Algorithms*
    Ishaq Y. K. Alshuaili
    John Y. H. Soo
    Mohd. Zubir Mat Jafri
    Yasmin Rafid
    Astronomy Letters, 2022, 48 : 665 - 675
  • [37] Improving Photometric Redshifts by Merging Probability Density Functions from Template-Based and Machine Learning Algorithms
    Alshuaili, Ishaq Y. K.
    Soo, John Y. H.
    Jafri, Mohd. Zubir Mat
    Rafid, Yasmin
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2022, 48 (11): : 665 - 675
  • [38] Downhole density estimation using multielement geochemistry and machine learning
    Goodfellow S.D.
    Wei N.
    Drielsma C.
    Gerrie V.
    Petrie L.
    Leading Edge, 2022, 41 (06): : 400 - 410
  • [39] Galaxy correlation function and local density from photometric redshifts using the stochastic order redshift technique (SORT)
    Kakos, James
    Primack, Joel R.
    Rodriguez-Puebla, Aldo
    Tejos, Nicolas
    Yung, L. Y. Aaron
    Somerville, Rachel S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 514 (02) : 1857 - 1878
  • [40] Machine-learning free-energy functionals using density profiles from simulations
    Cats, Peter
    Kuipers, Sander
    de Wind, Sacha
    van Damme, Robin
    Coli, Gabriele M.
    Dijkstra, Marjolein
    van Roij, Rene
    APL MATERIALS, 2021, 9 (03)