Machine-learning free-energy functionals using density profiles from simulations

被引:24
|
作者
Cats, Peter [1 ]
Kuipers, Sander [1 ]
de Wind, Sacha [1 ]
van Damme, Robin [2 ]
Coli, Gabriele M. [2 ]
Dijkstra, Marjolein [2 ]
van Roij, Rene [1 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
[2] Debye Inst Nanomat Sci, Soft Condensed Matter, Princetonpl 1, NL-3584 CC Utrecht, Netherlands
关键词
FUNDAMENTAL MEASURE-THEORY; HARD-SPHERE MIXTURES; EQUATION-OF-STATE; FLUIDS; MODEL;
D O I
10.1063/5.0042558
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The formally exact framework of equilibrium Density Functional Theory (DFT) is capable of simultaneously and consistently describing thermodynamic and structural properties of interacting many-body systems in arbitrary external potentials. In practice, however, DFT hinges on approximate (free-)energy functionals from which density profiles (and hence the thermodynamic potential) follow via an Euler-Lagrange equation. Here, we explore a relatively simple Machine-Learning (ML) approach to improve the standard mean-field approximation of the excess Helmholtz free-energy functional of a 3D Lennard-Jones system at a supercritical temperature. The learning set consists of density profiles from grand-canonical Monte Carlo simulations of this system at varying chemical potentials and external potentials in a planar geometry only. Using the DFT formalism, we nevertheless can extract not only very accurate 3D bulk equations of state but also radial distribution functions using the Percus test-particle method. Unfortunately, our ML approach did not provide very reliable Ornstein-Zernike direct correlation functions for small distances.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Nuclear energy density functionals from machine learning
    Wu, X. H.
    Ren, Z. X.
    Zhao, P. W.
    PHYSICAL REVIEW C, 2022, 105 (03)
  • [2] Molecular dynamics fingerprints (MDFP): Machine-learning from MD data to predict free-energy differences
    Riniker, Sereina
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [3] Efficient machine learning approach for accurate free-energy profiles and kinetic rates
    Devergne, Timothee
    Huet, Leon
    Pietrucci, Fabio
    Saitta, A. Marco
    PHYSICAL REVIEW E, 2024, 110 (03)
  • [4] Tunable noninteracting free-energy density functionals for high-energy-density physics applications
    Karasiev, Valentin V.
    Mihaylov, Deyan, I
    Zhang, Shuai
    Hinz, Joshua P.
    Goshadze, R. M. N.
    Hu, S. X.
    PHYSICS OF PLASMAS, 2024, 31 (07)
  • [5] Framework for Laplacian-Level Noninteracting Free-Energy Density Functionals
    Karasiev, Valentin V.
    Hinz, Joshua
    Goshadze, R. M. N.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (32): : 8272 - 8279
  • [6] FREE-ENERGY DENSITY FUNCTIONALS FOR NON-UNIFORM CLASSICAL FLUIDS
    ROBLEDO, A
    VAREA, C
    LECTURE NOTES IN PHYSICS, 1983, 187 : 287 - 301
  • [7] From free-energy profiles to activation free energies
    Dietschreit, Johannes C. B.
    Diestler, Dennis J. J.
    Hulm, Andreas
    Ochsenfeld, Christian
    Gomez-Bombarelli, Rafael
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (08):
  • [8] Learning Neural Free-Energy Functionals with Pair-Correlation Matching
    Dijkman, Jacobus
    Dijkstra, Marjolein
    van Roij, Rene
    Welling, Max
    van de Meent, Jan-Willem
    Ensing, Bernd
    PHYSICAL REVIEW LETTERS, 2025, 134 (05)
  • [9] THE FREE-ENERGY DENSITY
    LOVETT, R
    BAUS, M
    PHYSICA A, 1993, 196 (03): : 368 - 374
  • [10] LEGENDRE TRANSFORMS OF ELECTROSTATIC FREE-ENERGY FUNCTIONALS
    Ciotti, Benjamin
    Li, Bo
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (06) : 2973 - 2995