Machine-learning free-energy functionals using density profiles from simulations

被引:24
|
作者
Cats, Peter [1 ]
Kuipers, Sander [1 ]
de Wind, Sacha [1 ]
van Damme, Robin [2 ]
Coli, Gabriele M. [2 ]
Dijkstra, Marjolein [2 ]
van Roij, Rene [1 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
[2] Debye Inst Nanomat Sci, Soft Condensed Matter, Princetonpl 1, NL-3584 CC Utrecht, Netherlands
关键词
FUNDAMENTAL MEASURE-THEORY; HARD-SPHERE MIXTURES; EQUATION-OF-STATE; FLUIDS; MODEL;
D O I
10.1063/5.0042558
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The formally exact framework of equilibrium Density Functional Theory (DFT) is capable of simultaneously and consistently describing thermodynamic and structural properties of interacting many-body systems in arbitrary external potentials. In practice, however, DFT hinges on approximate (free-)energy functionals from which density profiles (and hence the thermodynamic potential) follow via an Euler-Lagrange equation. Here, we explore a relatively simple Machine-Learning (ML) approach to improve the standard mean-field approximation of the excess Helmholtz free-energy functional of a 3D Lennard-Jones system at a supercritical temperature. The learning set consists of density profiles from grand-canonical Monte Carlo simulations of this system at varying chemical potentials and external potentials in a planar geometry only. Using the DFT formalism, we nevertheless can extract not only very accurate 3D bulk equations of state but also radial distribution functions using the Percus test-particle method. Unfortunately, our ML approach did not provide very reliable Ornstein-Zernike direct correlation functions for small distances.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] FREE-ENERGY PROFILES AND SCALING IN POLYMER BRUSHES
    SHAFFER, JS
    PHYSICAL REVIEW E, 1994, 50 (02): : R683 - R686
  • [32] Free-Energy Landscape of Ribosome Translocation Analysed using MD Simulations and Cryo-EM Density Maps
    Ishida, Hisashi
    Matsumoto, Atsushi
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 259A - 259A
  • [33] Pitfall in Free-Energy Simulations on Simplest Systems
    Wong, Kin-Yiu
    Xu, Yuqing
    Xu, Liang
    CHEMISTRYSELECT, 2017, 2 (16): : 4398 - 4418
  • [34] Nonlocal free-energy density functional for a broad range of warm dense matter simulations
    Ma, Cheng
    Chen, Min
    Xie, Yu
    Xu, Qiang
    Mi, Wenhui
    Wang, Yanchao
    Ma, Yanming
    PHYSICAL REVIEW B, 2024, 110 (08)
  • [35] Machine Learning Density Functionals from the Random-Phase Approximation
    Riemelmoser, Stefan
    Verdi, Carla
    Kaltak, Merzuk
    Kresse, Georg
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (20) : 7287 - 7299
  • [36] FREE-ENERGY SIMULATIONS - THE MEANING OF THE INDIVIDUAL CONTRIBUTIONS FROM A COMPONENT ANALYSIS
    BORESCH, S
    ARCHONTIS, G
    KARPLUS, M
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1994, 20 (01) : 25 - 33
  • [37] IMPLICATIONS FOR ENZYMIC CATALYSIS FROM FREE-ENERGY REACTION COORDINATE PROFILES
    FIERKE, CA
    KUCHTA, RD
    JOHNSON, KA
    BENKOVIC, SJ
    COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1987, 52 : 631 - 638
  • [38] CALCULATION OF FREE-ENERGY DIFFERENCES FOR WATER FROM COMPUTER-SIMULATIONS
    SUSSMAN, F
    GOODFELLOW, JM
    BARNES, P
    FINNEY, JL
    CHEMICAL PHYSICS LETTERS, 1985, 113 (04) : 372 - 379
  • [39] Analysis of the Free-Energy Surface of Proteins from Reversible Folding Simulations
    Allen, Lucy R.
    Krivov, Sergei V.
    Paci, Emanuele
    PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (07)
  • [40] Computation of electronic chemical potentials using free energy density functionals
    Vuilleumier, R
    Sprik, M
    Alavi, A
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2000, 506 : 343 - 353