Extragradient Algorithm for Solving Pseudomonotone Equilibrium Problem with Bregman Distance in Reflexive Banach Spaces

被引:3
|
作者
Jolaoso, Lateef Olakunle [1 ]
Okeke, Christian Chibueze [2 ]
Shehu, Yekini [3 ]
机构
[1] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, POB 94, ZA-0204 Pretoria, South Africa
[2] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
来源
NETWORKS & SPATIAL ECONOMICS | 2021年 / 21卷 / 04期
关键词
Extragradient method; Equilibrium problems; Networks; Self-adaptive stepsize; Bregman distance; Banach spaces; KY FAN INEQUALITIES; STRONG-CONVERGENCE;
D O I
10.1007/s11067-021-09554-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Using the Bregman distance technique, we study the approximation of solution of pseudomonotone equilibrium problem using modified extragradient method in a real reflexive Banach space. Our proposed method involves a non-increasing self-adaptive stepsize rule and prove a weak convergence result without any prior estimate of the Lipschitz-like constants of the equilibrium bifunction under some appropriate conditions in a real reflexive Banach space. Some application to generalized Nash equilibrium problem in differential games is given. Finally, we give numerical examples to compare the performance of our method with other related methods in the literature and illustrate our method using various types of Bregman distance functions.
引用
收藏
页码:873 / 903
页数:31
相关论文
共 50 条