Axon and Myelin Sheath Segmentation in Electron Microscopy Images using Meta Learning

被引:0
|
作者
Nguyen, P. Nguyen [1 ]
Lopez, Stephanie [2 ]
Smith, Catherine L. [2 ]
Lever, Teresa E. [2 ,3 ]
Nichols, Nicole L. [2 ]
Bunyak, Filiz [1 ]
机构
[1] Univ Missouri Columbia, Dept Elect Engn & Comp Sci, Columbia, MO 65211 USA
[2] Univ Missouri Columbia, Dept Biomed Sci, Columbia, MO USA
[3] Univ Missouri Columbia, Dept Otolaryngol Head & Neck Surg, Columbia, MO USA
基金
美国国家卫生研究院;
关键词
myelin; axon; electron microscopy; meta learning;
D O I
10.1109/AIPR57179.2022.10092238
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Various neurological diseases affect the morphology of myelinated axons. Quantitative analysis of these structures and changes occurring due to neurodegeneration or neuroregeneration is of great importance for characterization of disease state and treatment response. This paper proposes a robust, meta-learning based pipeline for segmentation of axons and surrounding myelin sheaths in electron microscopy images. This is the first step towards computation of electron microscopy related bio-markers of hypoglossal nerve degeneration/regeneration. This segmentation task is challenging due to large variations in morphology and texture of myelinated axons at different levels of degeneration and very limited availability of annotated data. To overcome these difficulties, the proposed pipeline uses a meta learning-based training strategy and a U-net like encoder decoder deep neural network. Experiments on unseen test data collected at different magnification levels (i.e, trained on 500X and 1200X images, and tested on 250X and 2500X images) showed improved segmentation performance by 5% to 7% compared to a regularly trained, comparable deep learning network.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Myelin Segmentation in Fluorescence Microscopy Images
    Yetis, Sibel Cimen
    Ekinci, Dursun A.
    Cakir, Ertan
    Eksioglu, Ender M.
    Ayten, Umut E.
    Capar, Abdulkerim
    Toreyin, B. Ugur
    Kerman, Bilal E.
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 141 - 144
  • [2] Segmentation of scanning electron microscopy images using incremental learning.
    Impoco, G.
    Tuminello, L.
    Caccamo, M.
    Licitra, G.
    JOURNAL OF DAIRY SCIENCE, 2010, 93 : 749 - 749
  • [3] ELECTRON MICROSCOPY OF MYELIN SHEATH IN SECTIONS OF SPINAL CORD
    HARTMANN, JF
    EXPERIMENTAL CELL RESEARCH, 1951, 2 (01) : 126 - 132
  • [4] Myelin detection in fluorescence microscopy images using machine learning
    Yetis, Sibel Cimen
    Capar, Abdulkerim
    Ekinci, Dursun A.
    Ayten, Umut E.
    Kerman, Bilal E.
    Toreyin, B. Ugur
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 346
  • [5] LEARNING METRIC GRAPHS FOR NEURON SEGMENTATION IN ELECTRON MICROSCOPY IMAGES
    Luther, Kyle
    Seung, H. Sebastian
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 244 - 248
  • [6] Multi-class Segmentation of Neuronal Electron Microscopy Images Using Deep Learning
    Khobragade, Nivedita
    Agarwal, Chirag
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [7] AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks
    Aldo Zaimi
    Maxime Wabartha
    Victor Herman
    Pierre-Louis Antonsanti
    Christian S. Perone
    Julien Cohen-Adad
    Scientific Reports, 8
  • [8] AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks
    Zaimi, Aldo
    Wabartha, Maxime
    Herman, Victor
    Antonsanti, Pierre-Louis
    Perone, Christian S.
    Cohen-Adad, Julien
    SCIENTIFIC REPORTS, 2018, 8
  • [9] SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES
    Seyedhosseini, Mojtaba
    Ellisman, Mark H.
    Tasdizen, Tolga
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 860 - 863
  • [10] AXON SEGMENTATION IN MICROSCOPY IMAGES - A GRAPHICAL MODEL BASED APPROACH
    Golabchi, F. Noushin
    Brooks, Dana H.
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 756 - 759