Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2

被引:13
|
作者
Dwivedy, Abhisek [1 ]
Mariadasse, Richard [2 ]
Ahmad, Mohammed [1 ]
Chakraborty, Sayan [1 ]
Kar, Deepsikha [1 ]
Tiwari, Satish [1 ]
Bhattacharyya, Sankar [3 ]
Sonar, Sudipta [3 ]
Mani, Shailendra [3 ]
Tailor, Prafullakumar [1 ]
Majumdar, Tanmay [1 ]
Jeyakanthan, Jeyaraman [2 ]
Biswal, Bichitra Kumar [1 ]
机构
[1] Natl Inst Immunol, New Delhi, India
[2] Alagappa Univ, Dept Bioinformat, Karaikkudi, Tamil Nadu, India
[3] Translat Hlth Sci & Technol Inst, Faridabad, India
关键词
PROTEIN-KINASE INHIBITORS; INTRINSIC ATPASE ACTIVITY; CONSERVED DOMAIN; CATALYTIC DOMAIN; STRUCTURAL BASIS; REPLICATION; RIBAVIRIN; BINDING; SUPERFAMILY; RECOGNITION;
D O I
10.1371/journal.pcbi.1009384
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Author summary The on-going coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is significantly affecting the world health. Unfortunately, over 180 million cases of COVID-19 resulting in nearly 4 million deaths have been reported till June, 2021. In this study, using a combination of bioinformatics, biochemical and mass spectrometry methods, we show that the Nidovirus RdRp associated Nucleotidyl transferase (NiRAN) domain of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 exhibits a kinase like activity. Additionally, we also show that few broad spectrum anti-cancer and anti-microbial drugs dampen this kinase like activity. Of note, Sorafenib, an FDA approved anti-cancer kinase inhibiting drug significantly reduces the SARS-CoV-2 load in cell lines. Our study suggests that NiRAN domain of the SARS-CoV-2 RdRp is indispensible for the successful viral life cycle and shows that abolishing this enzymatic function of RdRp by small molecule inhibitors may open novel avenues for COVID-19 therapeutics.</p> Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of RdRp from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, we predict that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds nucleoside triphosphates at its proposed active site. Additionally, using molecular docking we have predicted the binding of three widely used kinase inhibitors and five well characterized anti-microbial compounds at the NiRAN domain active site along with their drug-likeliness. For the first time ever, using basic biochemical tools, this study shows the presence of a kinase like activity exhibited by the SARS-CoV-2 RdRp. Interestingly, a well-known kinase inhibitor- Sorafenib showed a significant inhibition and dampened viral load in SARS-CoV-2 infected cells. In line with the current global COVID-19 pandemic urgency and the emergence of newer strains with significantly higher infectivity, this study provides a new anti-SARS-CoV-2 drug target and potential lead compounds for drug repurposing against SARS-CoV-2.</p>
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Novel adenosine derivatives against SARS-CoV-2 RNA-dependent RNA polymerase: an in silico perspective
    Sonousi, Amr
    Mahran, Hanan A.
    Ibrahim, Ibrahim M.
    Ibrahim, Mohamed N.
    Elfiky, Abdo A.
    Elshemey, Wael M.
    [J]. PHARMACOLOGICAL REPORTS, 2021, 73 (06) : 1754 - 1764
  • [22] Amentoflavone from Selaginella tamariscina inhibits SARS-CoV-2 RNA-dependent RNA polymerase
    Youn, Kyoung Won
    Lee, Siyun
    Kim, Jang Hoon
    Park, Yea-In
    So, Jaeyeon
    Kim, Chansoo
    Cho, Chong Woon
    Park, Junsoo
    [J]. HELIYON, 2024, 10 (16)
  • [23] Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir
    Yin, Wanchao
    Mao, Chunyou
    Luan, Xiaodong
    Shen, Dan-Dan
    Shen, Qingya
    Su, Haixia
    Wang, Xiaoxi
    Zhou, Fulai
    Zhao, Wenfeng
    Gao, Minqi
    Chang, Shenghai
    Xie, Yuan-Chao
    Tian, Guanghui
    Jiang, He-Wei
    Tao, Sheng-Ce
    Shen, Jingshan
    Jiang, Yi
    Jiang, Hualiang
    Xu, Yechun
    Zhang, Shuyang
    Zhang, Yan
    Xu, H. Eric
    [J]. SCIENCE, 2020, 368 (6498) : 1499 - +
  • [24] Potential RNA-dependent RNA polymerase (RdRp) inhibitors as prospective drug candidates for SARS-CoV-2
    Bekheit, Mohamed S.
    Panda, Siva S.
    Girgis, Adel S.
    [J]. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2023, 252
  • [25] Covalent Inhibitors from Saudi Medicinal Plants Target RNA-Dependent RNA Polymerase (RdRp) of SARS-CoV-2
    Bakheit, Ahmed H.
    Saquib, Quaiser
    Ahmed, Sarfaraz
    Ansari, Sabiha M.
    Al-Salem, Abdullah M.
    Al-Khedhairy, Abdulaziz A.
    [J]. VIRUSES-BASEL, 2023, 15 (11):
  • [26] Structural Basis of the Potential Binding Mechanism of Remdesivir to SARS-CoV-2 RNA-Dependent RNA Polymerase
    Zhang, Leili
    Zhou, Ruhong
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (32): : 6955 - 6962
  • [27] Effects of natural RNA modifications on the activity of SARS-CoV-2 RNA-dependent RNA polymerase
    Petushkov, Ivan
    Esyunina, Daria
    Kulbachinskiy, Andrey
    [J]. FEBS JOURNAL, 2023, 290 (01) : 80 - 92
  • [28] Potential of turmeric-derived compounds against RNA-dependent RNA polymerase of SARS-CoV-2: An in-silico approach
    Singh, Rahul
    Bhardwaj, Vijay Kumar
    Purohit, Rituraj
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 139
  • [29] Electron Density Analysis of SARS-CoV-2 RNA-Dependent RNA Polymerase Complexes
    Palko, Nadezhda
    Grishina, Maria
    Potemkin, Vladimir
    [J]. MOLECULES, 2021, 26 (13):
  • [30] Inhibition of the RNA-dependent RNA Polymerase of the SARS-CoV-2 by Short Peptide Inhibitors
    Pant, Suyash
    Jena, N. R.
    [J]. EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2021, 167