New scaling laws for self-avoiding walks: bridges and worms

被引:4
|
作者
Duplantier, Bertrand [1 ]
Guttmann, Anthony J. [2 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS,CEA Saclay, Bat 774, F-91191 Gif Sur Yvette, France
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
critical exponents and amplitudes; series expansions; surface effects; SURFACE CRITICAL-BEHAVIOR; BROWNIAN INTERSECTION EXPONENTS; CONFORMAL-INVARIANCE; POLYMER NETWORKS; O(N) MODEL; RENORMALIZATION; ADSORPTION; CHAIN; DIMENSIONS; BOUNDARY;
D O I
10.1088/1742-5468/ab4584
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We show how the theory of the critical behaviour of d-dimensional polymer networks gives a scaling relation for self-avoiding bridges that relates the critical exponent for bridges gamma(b) to that of terminally-attached self-avoiding arches, gamma(11), and the correlation length exponent nu. We find gamma(b) = gamma(11) + nu. In the case of the special transition, we find gamma(b)(sp) = 1 2 [gamma(11)(sp) + gamma(11)] + nu. We provide compelling numerical evidence for this result in both two- and three-dimensions. Another subset of SAWs, called worms, are defined as the subset of SAWs whose origin and end-point have the same x-coordinate. We give a scaling relation for the corresponding critical exponent gamma(w), which is gamma(w) = gamma - nu. This too is supported by enumerative results in the two-dimensional case.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Self-Avoiding Walks on the UIPQ
    Caraceni, Alessandra
    Curien, Nicolas
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - III: INTERACTING PARTICLE SYSTEMS AND RANDOM WALKS, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 300 : 138 - 165
  • [42] Self-avoiding walks with writhe
    Moroz, JD
    Kamien, RD
    NUCLEAR PHYSICS B, 1997, 506 (03) : 695 - 710
  • [43] Self-avoiding walks in a rectangle
    Guttmann, Anthony J.
    Kennedy, Tom
    JOURNAL OF ENGINEERING MATHEMATICS, 2014, 84 (01) : 201 - 208
  • [44] Locally self-avoiding walks
    Iagolnitzer, D
    Magnen, J
    FUNCTIONAL INTEGRATION: BASICS AND APPLICATIONS, 1997, 361 : 309 - 325
  • [45] SELF-AVOIDING WALKS IN WEDGES
    HAMMERSLEY, JM
    WHITTINGTON, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01): : 101 - 111
  • [46] The Language of Self-Avoiding Walks
    Christian Lindorfer
    Wolfgang Woess
    Combinatorica, 2020, 40 : 691 - 720
  • [47] Weighted self-avoiding walks
    Grimmett, Geoffrey R.
    Li, Zhongyang
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 52 (01) : 77 - 102
  • [48] Anisotropic self-avoiding walks
    Borgs, C
    Chayes, J
    King, C
    Madras, N
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (03) : 1321 - 1337
  • [49] KNOTS IN SELF-AVOIDING WALKS
    SUMNERS, DW
    WHITTINGTON, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07): : 1689 - 1694
  • [50] Self-avoiding walks in a rectangle
    Anthony J. Guttmann
    Tom Kennedy
    Journal of Engineering Mathematics, 2014, 84 : 201 - 208