New scaling laws for self-avoiding walks: bridges and worms

被引:4
|
作者
Duplantier, Bertrand [1 ]
Guttmann, Anthony J. [2 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS,CEA Saclay, Bat 774, F-91191 Gif Sur Yvette, France
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2019年 / 2019卷 / 10期
基金
澳大利亚研究理事会;
关键词
critical exponents and amplitudes; series expansions; surface effects; SURFACE CRITICAL-BEHAVIOR; BROWNIAN INTERSECTION EXPONENTS; CONFORMAL-INVARIANCE; POLYMER NETWORKS; O(N) MODEL; RENORMALIZATION; ADSORPTION; CHAIN; DIMENSIONS; BOUNDARY;
D O I
10.1088/1742-5468/ab4584
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We show how the theory of the critical behaviour of d-dimensional polymer networks gives a scaling relation for self-avoiding bridges that relates the critical exponent for bridges gamma(b) to that of terminally-attached self-avoiding arches, gamma(11), and the correlation length exponent nu. We find gamma(b) = gamma(11) + nu. In the case of the special transition, we find gamma(b)(sp) = 1 2 [gamma(11)(sp) + gamma(11)] + nu. We provide compelling numerical evidence for this result in both two- and three-dimensions. Another subset of SAWs, called worms, are defined as the subset of SAWs whose origin and end-point have the same x-coordinate. We give a scaling relation for the corresponding critical exponent gamma(w), which is gamma(w) = gamma - nu. This too is supported by enumerative results in the two-dimensional case.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Weighted self-avoiding walks
    Geoffrey R. Grimmett
    Zhongyang Li
    Journal of Algebraic Combinatorics, 2020, 52 : 77 - 102
  • [32] IRREVERSIBLE SELF-AVOIDING WALKS
    LYKLEMA, JW
    KREMER, K
    JOURNAL OF STATISTICAL PHYSICS, 1985, 39 (1-2) : 253 - 253
  • [33] Self-avoiding walks and amenability
    Grimmett, Geoffrey R.
    Li, Zhongyang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (04):
  • [34] The shape of self-avoiding walks
    Sciutto, SJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17): : 5455 - 5473
  • [35] POLYMERS AS SELF-AVOIDING WALKS
    FREED, KF
    ANNALS OF PROBABILITY, 1981, 9 (04): : 537 - 551
  • [36] ON NUMBER OF SELF-AVOIDING WALKS
    KESTEN, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (07) : 960 - &
  • [37] Endless self-avoiding walks
    Clisby, Nathan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (23)
  • [38] SELF-AVOIDING CHIRAL WALKS
    Dutta, Sumana
    Steinbock, Oliver
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (11): : 3717 - 3723
  • [39] KNOTTEDNESS IN SELF-AVOIDING WALKS
    WINDWER, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (13): : L605 - L608
  • [40] The Language of Self-Avoiding Walks
    Lindorfer, Christian
    Woess, Wolfgang
    COMBINATORICA, 2020, 40 (05) : 691 - 720