The ITER Thomson scattering core LIDAR diagnostic

被引:10
|
作者
Naylor, G. A. [1 ]
Scannell, R. [1 ]
Beurskens, M. [1 ]
Walsh, M. J. [1 ]
Pastor, I. [2 ]
Donne, A. J. H. [3 ]
Snijders, B. [4 ]
Biel, W. [5 ]
Meszaros, B. [6 ]
Giudicotti, L. [7 ]
Pasqualotto, R. [7 ]
Marot, L. [8 ]
机构
[1] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Asociac Euratom Ciemat Fus, Madrid 28040, Spain
[3] Eindhoven Univ Technol, Appl Phys Dept, NL-5612 AZ Eindhoven, Netherlands
[4] TNO Opt, ITER NL, NL-2600 AD Delft, Netherlands
[5] Assoc EURATOM FZJ, Forschungszentrum Julich, Inst Energy & Climate Res Plasma Phys, D-52428 Julich, Germany
[6] Assoc EURATOM HAS, H-1525 Budapest, Hungary
[7] Assoc EURATOM ENEA Fus, Consorzio RFX, I-35127 Padua, Italy
[8] Univ Basel, Dept Phys, Assoc EURATOM CRPP, CH-4056 Basel, Switzerland
来源
关键词
Optics; Plasma diagnostics - probes; Plasma diagnostics - interferometry; spectroscopy and imaging;
D O I
10.1088/1748-0221/7/03/C03043
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The central electron temperature and density of the ITER plasma may be determined by Thomson scattering. A LIDAR topology is proposed in order to minimize the port access required of the ITER vacuum vessel. By using a LIDAR technique, a profile of the electron temperature and density can be determined with a resolution of about 7 cm in the central region of the plasma by using a short pulse laser (similar to 300 ps). Requirements for advanced plasma control indicate that such measurements should be taken at a rate of 100 Hz during a plasma shot. The limited collection cone angle possible on the ITER reactor implies the use of a high pulse energy laser (similar to 5 J at 1 mu m). The combination of very high average power and peak power required represents a serious challenge for current laser technology. Schemes able to provide this level of laser performance will be presented along with efficient and cost effective methods of maximizing the collected light while minimizing the collection of background light by the use of an axicon element.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] GaAs photomultiplier for LIDAR Thomson scattering
    Pasqualotto, R
    Nielsen, P
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (03): : 1671 - 1674
  • [42] Calibration methods for ITER core LIDAR
    Pasqualotto, R.
    Giudicotti, L.
    Alfier, A.
    Walsh, M. J.
    14TH INTERNATIONAL SYMPOSIUM ON LASER-AIDED PLASMA DIAGNOSTICS (LAPD14), 2010, 227
  • [43] Nd:YAG lasers for ITER divertor Thomson scattering
    Kornev, A. F.
    Davtian, A. S.
    Kovyarova, A. S.
    Makarov, A. M.
    Oborotov, D. O.
    Pokrovskii, V. P.
    Porozov, A. A.
    Sobolev, S. S.
    Stupnikov, V. K.
    Kurskiev, G. S.
    Mukhin, E. E.
    Tolstyakov, S. Yu
    Andrew, P.
    Kempenaars, M.
    Vayakis, G.
    Walsh, M.
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 1019 - 1022
  • [44] Physical aspects of divertor Thomson scattering implementation on ITER
    Mukhin, E. E.
    Pitts, R. A.
    Andrew, P.
    Bukreev, I. M.
    Chernakov, P. V.
    Giudicotti, L.
    Huijsmans, G.
    Kochergin, M. M.
    Koval, A. N.
    Kukushkin, A. S.
    Kurskiev, G. S.
    Litvinov, A. E.
    Masyukevich, S. V.
    Pasqualotto, R.
    Razdobarin, A. G.
    Semenov, V. V.
    Tolstyakov, S. Yu.
    Walsh, M. J.
    NUCLEAR FUSION, 2014, 54 (04)
  • [45] Neutronics analysis of the ITER Collective Thomson Scattering system
    Lopes, A.
    Luis, R.
    Klinkby, E.
    Nonbol, E.
    Jessen, M.
    Moutinho, R.
    Salewski, M.
    Rasmussen, J.
    Goncalves, B.
    Lauritzen, B.
    Korsholm, S. B.
    Larsen, A. W.
    Vidal, C.
    FUSION ENGINEERING AND DESIGN, 2018, 134 : 22 - 28
  • [46] Progress in development of edge Thomson scattering system for ITER
    Hatae, T.
    Nakatsuka, M.
    Yoshida, H.
    Ebisawa, K.
    Kusama, Y.
    Sato, K.
    Katsunuma, A.
    Kubomura, H.
    Shinobu, K.
    FUSION SCIENCE AND TECHNOLOGY, 2007, 51 (2T) : 58 - 61
  • [47] Shielding analysis of the ITER Collective Thomson Scattering system
    Lopes, A.
    Luis, R.
    Klinkby, E.
    Nietiadi, Y.
    Chambon, A.
    Nonbol, E.
    Goncalves, B.
    Jessen, M.
    Korsholm, S. B.
    Larsen, A. W.
    Lauritzen, B.
    Rasmussen, J.
    Salewski, M.
    FUSION ENGINEERING AND DESIGN, 2020, 161 (161)
  • [48] Review of possibilities for a collective Thomson scattering system on ITER
    Orsitto, F
    Giruzzi, G
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (01): : 686 - 688
  • [49] Design of JT-60SA core Thomson scattering diagnostic system
    Tojo, H.
    Pasqualotto, R.
    Fassina, A.
    Giudicotti, L.
    Sasao, H.
    Homma, H.
    Oyama, N.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (04):
  • [50] Review of possibilities for a collective Thomson scattering system on ITER
    Orsitto, F
    DIAGNOSTICS FOR EXPERIMENTAL THERMONUCLEAR FUSION REACTORS, 1996, : 527 - 530