The ITER Thomson scattering core LIDAR diagnostic

被引:10
|
作者
Naylor, G. A. [1 ]
Scannell, R. [1 ]
Beurskens, M. [1 ]
Walsh, M. J. [1 ]
Pastor, I. [2 ]
Donne, A. J. H. [3 ]
Snijders, B. [4 ]
Biel, W. [5 ]
Meszaros, B. [6 ]
Giudicotti, L. [7 ]
Pasqualotto, R. [7 ]
Marot, L. [8 ]
机构
[1] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Asociac Euratom Ciemat Fus, Madrid 28040, Spain
[3] Eindhoven Univ Technol, Appl Phys Dept, NL-5612 AZ Eindhoven, Netherlands
[4] TNO Opt, ITER NL, NL-2600 AD Delft, Netherlands
[5] Assoc EURATOM FZJ, Forschungszentrum Julich, Inst Energy & Climate Res Plasma Phys, D-52428 Julich, Germany
[6] Assoc EURATOM HAS, H-1525 Budapest, Hungary
[7] Assoc EURATOM ENEA Fus, Consorzio RFX, I-35127 Padua, Italy
[8] Univ Basel, Dept Phys, Assoc EURATOM CRPP, CH-4056 Basel, Switzerland
来源
关键词
Optics; Plasma diagnostics - probes; Plasma diagnostics - interferometry; spectroscopy and imaging;
D O I
10.1088/1748-0221/7/03/C03043
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The central electron temperature and density of the ITER plasma may be determined by Thomson scattering. A LIDAR topology is proposed in order to minimize the port access required of the ITER vacuum vessel. By using a LIDAR technique, a profile of the electron temperature and density can be determined with a resolution of about 7 cm in the central region of the plasma by using a short pulse laser (similar to 300 ps). Requirements for advanced plasma control indicate that such measurements should be taken at a rate of 100 Hz during a plasma shot. The limited collection cone angle possible on the ITER reactor implies the use of a high pulse energy laser (similar to 5 J at 1 mu m). The combination of very high average power and peak power required represents a serious challenge for current laser technology. Schemes able to provide this level of laser performance will be presented along with efficient and cost effective methods of maximizing the collected light while minimizing the collection of background light by the use of an axicon element.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Progress and challenges in the design of ITER's polarimetric Thomson scattering diagnostic system
    Bagnato, F.
    Bassan, M.
    Sirinelli, A.
    Vayakis, G.
    Kempenaars, M.
    Giudicotti, L.
    d'Isa, F. A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (08):
  • [32] RADIATION TRANSPORT ANALYSES FOR DESIGN OPTIMISATION OF THE ITER CORE LIDAR DIAGNOSTIC
    Pampin, R.
    Loughlin, M. J.
    Walsh, M. J.
    FUSION SCIENCE AND TECHNOLOGY, 2009, 56 (02) : 751 - 755
  • [33] Prototype of Fast Data Acquisition Systems for ITER Divertor Thomson Scattering Diagnostic
    Ivanenko, S.
    Khilchenko, A.
    Puryga, E.
    Zubarev, P.
    Kvashnin, A.
    Ovchar, V.
    Ivanova, A.
    Kotelnikov, A.
    2014 19TH IEEE-NPSS REAL TIME CONFERENCE (RT), 2014,
  • [34] Thomson scattering diagnostics for ITER divertor
    Mukhin, E. E.
    Kukushkin, A. S.
    Tolstyakov, S. Yu
    Kochergin, M. M.
    Semenov, V. V.
    Kurskiev, G. S.
    Razdobarin, A. G.
    Podushnikova, K. A.
    Andrew, P.
    14TH INTERNATIONAL SYMPOSIUM ON LASER-AIDED PLASMA DIAGNOSTICS (LAPD14), 2010, 227
  • [35] A study of core Thomson scattering measurements in ITER using a multi-laser approach
    Kurskiev, G. S.
    Sdvizhenskii, P. A.
    Bassan, M.
    Andrew, P.
    Bazhenov, A. N.
    Bukreev, I. M.
    Chernakov, P. V.
    Kochergin, M. M.
    Kukushkin, A. B.
    Kukushkin, A. S.
    Mukhin, E. E.
    Razdobarin, A. G.
    Samsonov, D. S.
    Semenov, V. V.
    Tolstyakov, S. Yu.
    Kajita, S.
    Masyukevich, S. V.
    NUCLEAR FUSION, 2015, 55 (05)
  • [36] Status of Thomson scattering diagnostic design for ITER X-point and divertor plasmas
    Razdobarin, GT
    Mukhin, EE
    DIAGNOSTICS FOR EXPERIMENTAL THERMONUCLEAR FUSION REACTORS 2, 1998, : 237 - 246
  • [37] High-speed Recorder Based on SCA Technology for Thomson Scattering Diagnostic on ITER
    Puryga, Ekaterina A.
    Ivanenko, Svetlana V.
    Kvashnin, Andrew N.
    Khilchenko, Aleksander D.
    Zubarev, Peter V.
    Moiseev, Denis V.
    2016 IEEE NUCLEAR SCIENCE SYMPOSIUM, MEDICAL IMAGING CONFERENCE AND ROOM-TEMPERATURE SEMICONDUCTOR DETECTOR WORKSHOP (NSS/MIC/RTSD), 2016,
  • [38] Collective Thomson scattering (CTS) system on ITER
    Orsitto, F
    Giruzzi, G
    Nowak, S
    DIAGNOSTICS FOR EXPERIMENTAL THERMONUCLEAR FUSION REACTORS 2, 1998, : 253 - 256
  • [39] Polychromator for the edge Thomson scattering system in ITER
    Yatsuka, E.
    Hatae, T.
    Fujie, D.
    Kurokawa, A.
    Kusama, Y.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10):
  • [40] Hardware solutions for ITER divertor Thomson scattering
    Mukhin, Eugene
    Andrew, Philip
    Babinov, Nikita
    Bassan, Michele
    Bazhenov, Alexander
    Bukreev, Ivan
    Chernakov, Alexander
    Chernakov, Anton
    Dmitriev, Artem
    Yukish, Victor
    Kochergin, Michael
    Koval, Alexander
    Kurskiev, Gleb
    Litvinov, Andrey
    Nelyubov, Vladimir
    Razdobarin, Alexey
    Samsonov, Dmitry
    Semenov, Vladimir
    Solokha, Vladimir
    Solovey, Valery
    Tolstyakov, Sergey
    Walsh, Michael
    FUSION ENGINEERING AND DESIGN, 2017, 123 : 686 - 689