On the isometry group of RCD*(K, N)-spaces

被引:0
|
作者
Guijarro, Luis [1 ,2 ]
Santos-Rodriguez, Jaime [1 ]
机构
[1] Univ Autonoma Madrid, Dept Math, Madrid, Spain
[2] ICMAT CSIC UAM UCM UC3M, Madrid, Spain
关键词
METRIC-MEASURE-SPACES; RICCI CURVATURE; GEOMETRY;
D O I
10.1007/s00229-018-1010-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the group of isometries of a metric measure space that satisfies the Riemannian curvature condition, RCD*(K, N), is a Lie group. We obtain an optimal upper bound on the dimension of this group, and classify the spaces where this maximal dimension is attained.
引用
收藏
页码:441 / 461
页数:21
相关论文
共 50 条
  • [1] The Isometry Group of an RCD* Space is Lie
    Sosa, Gerardo
    POTENTIAL ANALYSIS, 2018, 49 (02) : 267 - 286
  • [2] The Isometry Group of an RCD∗ Space is Lie
    Gerardo Sosa
    Potential Analysis, 2018, 49 : 267 - 286
  • [3] Ricci Tensor on RCD*(K, N) Spaces
    Han, Bang-Xian
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) : 1295 - 1314
  • [4] Radial processes on RCD*(K, N) spaces
    Kuwada, Kazumasa
    Kuwae, Kazuhrio
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 126 : 72 - 108
  • [5] Local spectral convergence in RCD*(K, N) spaces
    Ambrosio, Luigi
    Honda, Shouhei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 1 - 23
  • [6] Characterization of Low Dimensional RCD*(K, N) Spaces
    Kitabeppu, Yu
    Lakzian, Sajjad
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2016, 4 (01): : 187 - 215
  • [7] On the topology and the boundary of N-dimensional RCD (K, N) spaces
    Kapovitch, Vitali
    Mondino, Andrea
    GEOMETRY & TOPOLOGY, 2021, 25 (01) : 445 - 495
  • [8] Obstacle Problems on RCD(K, N) Metric Measure Spaces
    Lin, Sitan
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (05) : 1925 - 1944
  • [9] RECTIFIABILITY OF RCD(K, N) SPACES VIA δ-SPLITTING MAPS
    Brue, Elia
    Pasqualetto, Enrico
    Semola, Daniele
    ANNALES FENNICI MATHEMATICI, 2021, 46 (01): : 465 - 482
  • [10] Obstacle Problems on RCD(K, N) Metric Measure Spaces
    Sitan Lin
    Acta Mathematica Scientia, 2023, 43 : 1925 - 1944