The Isometry Group of an RCD* Space is Lie

被引:8
|
作者
Sosa, Gerardo [1 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
Metric spaces; Group actions; Lie groups; Ricci curvature; Synthetic Ricci curvature; Optimal transport; METRIC-MEASURE-SPACES; CURVATURE-DIMENSION CONDITION; RICCI CURVATURE; ALEXANDROV; GEOMETRY;
D O I
10.1007/s11118-017-9656-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give necessary and sufficient conditions that show that both the group of isometries and the group of measure-preserving isometries are Lie groups for a large class of metric measure spaces. In addition we study, among other examples, whether spaces having a generalized lower Ricci curvature bound fulfill these requirements. The conditions are satisfied by R C D (au)-spaces and, under extra assumptions, by C D-spaces, C D (au) P-spaces. However, we show that the M C C P-condition by itself is not enough to guarantee a smooth behavior of these automorphism groups.
引用
收藏
页码:267 / 286
页数:20
相关论文
共 50 条
  • [1] The Isometry Group of an RCD∗ Space is Lie
    Gerardo Sosa
    Potential Analysis, 2018, 49 : 267 - 286
  • [2] On the isometry group of RCD*(K, N)-spaces
    Guijarro, Luis
    Santos-Rodriguez, Jaime
    MANUSCRIPTA MATHEMATICA, 2019, 158 (3-4) : 441 - 461
  • [3] The space of left-invariant metrics on a Lie group up to isometry and scaling
    Kodama, Hiroshi
    Takahara, Atsushi
    Tamaru, Hiroshi
    MANUSCRIPTA MATHEMATICA, 2011, 135 (1-2) : 229 - 243
  • [4] The space of left-invariant metrics on a Lie group up to isometry and scaling
    Hiroshi Kodama
    Atsushi Takahara
    Hiroshi Tamaru
    Manuscripta Mathematica, 2011, 135 : 229 - 243
  • [5] The isometry group of Outer Space
    Francaviglia, Stefano
    Martino, Armando
    ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1940 - 1973
  • [6] On the isometry group of the Urysohn space
    Tent, Katrin
    Ziegler, Martin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 : 289 - 303
  • [7] The isometry group of the Urysohn space as a Levy group
    Pestov, Vladimir
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (10) : 2173 - 2184
  • [8] Topology of the isometry group of the Urysohn space
    Melleray, Julien
    FUNDAMENTA MATHEMATICAE, 2010, 207 (03) : 273 - 287
  • [9] THE ISOMETRY GROUP OF CHINESE CHECKER SPACE
    Gelisgen, Ozcan
    Kaya, Rustem
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2015, 8 (02): : 82 - 96
  • [10] ON DETERMINING THE ISOMETRY GROUP OF A RIEMANNIAN SPACE
    KARLHEDE, A
    MACCALLUM, MAH
    GENERAL RELATIVITY AND GRAVITATION, 1982, 14 (07) : 673 - 682