Evaluating prediction uncertainty in simulation models

被引:68
|
作者
McKay, MD [1 ]
Morrison, JD [1 ]
Upton, SC [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
model uncertainty; uncertainty analysis; sensitivity analysis; nonparametric variance decomposition;
D O I
10.1016/S0010-4655(98)00155-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Input values are a source of uncertainty for model predictions. When input uncertainty is characterized by a probability distribution, prediction uncertainty is characterized by the induced prediction distribution. Comparison of a model predictor based on a subset Of model inputs to the full model predictor leads to a natural decomposition of the prediction variance and the correlation ratio as a measure of importance. Because the variance decomposition does not depend on assumptions about the form of the relation between inputs and output, the analysis can be called nonparametric. Variance components can be estimated through designed computer experiments. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:44 / 51
页数:8
相关论文
共 50 条
  • [31] Developing and Evaluating Prediction Models in Rehabilitation Populations
    Seel, Ronald T.
    Steyerberg, Ewout W.
    Malec, James F.
    Sherer, Mark
    Macciocchi, Stephen N.
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2012, 93 (08): : S138 - S153
  • [32] THE ROLE OF PREDICTION IN EVALUATING ECONOMETRIC-MODELS
    HENDRY, DF
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 407 (1832): : 25 - 34
  • [33] Two Criteria for Evaluating Risk Prediction Models
    Pfeiffer, R. M.
    Gail, M. H.
    BIOMETRICS, 2011, 67 (03) : 1057 - 1065
  • [34] Evaluating the quality of reporting of melanoma prediction models
    Jiang, Matthew Y.
    Dragnev, Nathalie C.
    Wong, Sandra L.
    SURGERY, 2020, 168 (01) : 173 - 177
  • [35] Evaluating the Predictive Value of Growth Prediction Models
    Murphy, Daniel L.
    Gaertner, Matthew N.
    EDUCATIONAL MEASUREMENT-ISSUES AND PRACTICE, 2014, 33 (02) : 5 - 13
  • [36] Evaluating Parameter Uncertainty in a Simulation Model of Cancer Using Emulators
    de Carvalho, Tiago M.
    Heijnsdijk, Eveline A. M.
    Coffeng, Luc
    de Koning, Harry J.
    MEDICAL DECISION MAKING, 2019, 39 (04) : 405 - 413
  • [37] Evaluating the downscaling uncertainty of hydrometeorological data in snowmelt runoff simulation
    Haoxin Hu
    Xiankui Zeng
    Xing Cai
    Dongwei Gui
    Jichun Wu
    Dong Wang
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 2617 - 2632
  • [38] Evaluating the downscaling uncertainty of hydrometeorological data in snowmelt runoff simulation
    Hu, Haoxin
    Zeng, Xiankui
    Cai, Xing
    Gui, Dongwei
    Wu, Jichun
    Wang, Dong
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (09) : 2617 - 2632
  • [39] Evaluating Uncertainty of Nonlinear Microwave Calibration Models With Regression Residuals
    Williams, Dylan F.
    Jamroz, Benjamin
    Rezac, Jacob D.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (09) : 3776 - 3782
  • [40] Evaluating uncertainty in integrated environmental models: A review of concepts and tools
    Matott, L. Shawn
    Babendreier, Justin E.
    Purucker, S. Thomas
    WATER RESOURCES RESEARCH, 2009, 45