Evaluating prediction uncertainty in simulation models

被引:68
|
作者
McKay, MD [1 ]
Morrison, JD [1 ]
Upton, SC [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
model uncertainty; uncertainty analysis; sensitivity analysis; nonparametric variance decomposition;
D O I
10.1016/S0010-4655(98)00155-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Input values are a source of uncertainty for model predictions. When input uncertainty is characterized by a probability distribution, prediction uncertainty is characterized by the induced prediction distribution. Comparison of a model predictor based on a subset Of model inputs to the full model predictor leads to a natural decomposition of the prediction variance and the correlation ratio as a measure of importance. Because the variance decomposition does not depend on assumptions about the form of the relation between inputs and output, the analysis can be called nonparametric. Variance components can be estimated through designed computer experiments. (C) 1999 Elsevier Science B.V.
引用
收藏
页码:44 / 51
页数:8
相关论文
共 50 条
  • [21] An uncertainty quantification method for nanomaterial prediction models
    Vanli, O.A. (avanli@fsu.edu), 1600, Springer London (70): : 1 - 4
  • [22] An uncertainty quantification method for nanomaterial prediction models
    Vanli, O. Arda
    Chen, Li-Jen
    Tsai, Chao-his
    Zhang, Chuck
    Wang, Ben
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 70 (1-4): : 33 - 44
  • [23] Handling prediction uncertainty of neural network models
    Zapranis, A. (zapranis@uom.gr), 2005, WSEAS (04):
  • [24] A method to visualize the uncertainty of the prediction of radiobiological models
    Zhang, Lanlan
    Hub, Martina
    Thieke, Christian
    Floca, Ralf O.
    Karger, Christian P.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2013, 29 (05): : 556 - 561
  • [25] An uncertainty quantification method for nanomaterial prediction models
    O. Arda Vanli
    Li-Jen Chen
    Chao-his Tsai
    Chuck Zhang
    Ben Wang
    The International Journal of Advanced Manufacturing Technology, 2014, 70 : 33 - 44
  • [26] HYBRID MODELS OF UNCERTAINTY IN PROTEIN TOPOLOGY PREDICTION
    PARSONS, S
    APPLIED ARTIFICIAL INTELLIGENCE, 1995, 9 (03) : 335 - 351
  • [27] Measuring prediction uncertainty in models of species distribution
    Pearce, JL
    Venier, LA
    Ferrier, S
    McKenney, DW
    PREDICTING SPECIES OCCURRENCES: ISSUES OF ACCURACY AND SCALE, 2002, : 383 - 390
  • [28] Methods for the Uncertainty Quantification of Aircraft Simulation Models
    Rosic, Bojana V.
    Diekmann, Jobst H.
    JOURNAL OF AIRCRAFT, 2015, 52 (04): : 1247 - 1255
  • [29] MANAGING GEOTECHNICAL UNCERTAINTY WITH SIMULATION MODELS: AN INTRODUCTION
    Look, Burt G.
    AUSTRALIAN GEOMECHANICS JOURNAL, 2022, 57 (04): : 25 - 44
  • [30] An Evaluating Indicator for Urban Sprawl Simulation and Prediction
    Hu, Jiangquan
    Tao, Zhihong
    Chen, Jing
    Kou, Zongmiao
    Wu, Lun
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,