Hierarchical Bayesian Inversion of Global Variables and Large-Scale Spatial Fields

被引:7
|
作者
Wang, Lijing [1 ]
Kitanidis, Peter K. [2 ]
Caers, Jef [1 ]
机构
[1] Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
关键词
hierarchical Bayesian formulation; machine learning-based inversion; local principal component analysis; hyperparameters uncertainty; large-scale spatial fields inversion; COMPONENT GEOSTATISTICAL APPROACH; UNCERTAINTY QUANTIFICATION; SENSITIVITY-ANALYSIS; DATA ASSIMILATION; MATLAB TOOLBOX; MONTE; PARAMETERIZATION; ALGORITHM; INFERENCE; EFFICIENT;
D O I
10.1029/2021WR031610
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bayesian inversion is commonly applied to quantify uncertainty of hydrological variables. However, Bayesian inversion is usually focused on spatial hydrological properties instead of hyperparameters or non-gridded physical global variables. In this paper, we present a hierarchical Bayesian framework to quantify uncertainty of both global and spatial variables. We estimate first the posterior of global variables and then hierarchically estimate the posterior of the spatial field. We propose a machine learning-based inversion method to estimate the joint distribution of data and global variables directly without introducing a statistical likelihood. We also propose a new local dimension reduction method: local principal component analysis (local PCA) to update large-scale spatial fields with local data more efficiently. We illustrate the hierarchical Bayesian formulation with three case studies: one with a linear forward model (volume averaging inversion) and two with non-linear forward models (pumping tests and hydraulic head measurements), including a 3D case. Results show that quantifying global variables uncertainty is critical for assessing uncertainty on predictions. We show how the local PCA approach accelerates the inversion process. Furthermore, we provide an open-source Python package () on the hierarchical Bayesian framework including three case studies.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Understanding Large-Scale Software - A Hierarchical View
    Levy, Omer
    Feitelson, Dror G.
    2019 IEEE/ACM 27TH INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION (ICPC 2019), 2019, : 283 - 293
  • [42] Hierarchical optimization of large-scale systems with aftereffect
    Shashikhin, V.N.
    Avtomatika i Telemekhanika, 1993, (04): : 73 - 84
  • [43] Hierarchical features of large-scale cortical connectivity
    Costa, LD
    Sporns, O
    EUROPEAN PHYSICAL JOURNAL B, 2005, 48 (04): : 567 - 573
  • [44] ImageNet: A Large-Scale Hierarchical Image Database
    Deng, Jia
    Dong, Wei
    Socher, Richard
    Li, Li-Jia
    Li, Kai
    Li Fei-Fei
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 248 - 255
  • [45] Fast Placement for Large-scale Hierarchical FPGAs
    Dai, Hui
    Zhou, Qiang
    Cai, Yici
    Bian, Jinian
    Hong, Xianlong
    2009 11TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, PROCEEDINGS, 2009, : 190 - 194
  • [46] Hierarchical features of large-scale cortical connectivity
    L. da F. Costa
    O. Sporns
    The European Physical Journal B - Condensed Matter and Complex Systems, 2005, 48 : 567 - 573
  • [47] BIASING AND HIERARCHICAL STATISTICS IN LARGE-SCALE STRUCTURE
    FRY, JN
    GAZTANAGA, E
    ASTROPHYSICAL JOURNAL, 1993, 413 (02): : 447 - 452
  • [48] Hierarchical Management of Large-Scale Malware Data
    Kellogg, Lee
    Ruttenberg, Brian
    O'Connor, Alison
    Howard, Michael
    Pfeffer, Avi
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 666 - 674
  • [49] A dual formulation of wavefield reconstruction inversion for large-scale seismic inversion
    Rizzuti, Gabrio
    Louboutin, Mathias
    Wang, Rongrong
    Herrmann, Felix J.
    GEOPHYSICS, 2021, 86 (06) : R879 - R893
  • [50] Steel Enterprises to the Global Large-Scale
    He Xin Mysteel Research Institute
    China'sForeignTrade, 2009, (04) : 37 - 38