Hierarchical Bayesian Inversion of Global Variables and Large-Scale Spatial Fields

被引:7
|
作者
Wang, Lijing [1 ]
Kitanidis, Peter K. [2 ]
Caers, Jef [1 ]
机构
[1] Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
关键词
hierarchical Bayesian formulation; machine learning-based inversion; local principal component analysis; hyperparameters uncertainty; large-scale spatial fields inversion; COMPONENT GEOSTATISTICAL APPROACH; UNCERTAINTY QUANTIFICATION; SENSITIVITY-ANALYSIS; DATA ASSIMILATION; MATLAB TOOLBOX; MONTE; PARAMETERIZATION; ALGORITHM; INFERENCE; EFFICIENT;
D O I
10.1029/2021WR031610
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bayesian inversion is commonly applied to quantify uncertainty of hydrological variables. However, Bayesian inversion is usually focused on spatial hydrological properties instead of hyperparameters or non-gridded physical global variables. In this paper, we present a hierarchical Bayesian framework to quantify uncertainty of both global and spatial variables. We estimate first the posterior of global variables and then hierarchically estimate the posterior of the spatial field. We propose a machine learning-based inversion method to estimate the joint distribution of data and global variables directly without introducing a statistical likelihood. We also propose a new local dimension reduction method: local principal component analysis (local PCA) to update large-scale spatial fields with local data more efficiently. We illustrate the hierarchical Bayesian formulation with three case studies: one with a linear forward model (volume averaging inversion) and two with non-linear forward models (pumping tests and hydraulic head measurements), including a 3D case. Results show that quantifying global variables uncertainty is critical for assessing uncertainty on predictions. We show how the local PCA approach accelerates the inversion process. Furthermore, we provide an open-source Python package () on the hierarchical Bayesian framework including three case studies.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Bayesian Hierarchical Modeling of Nitrate Concentration in a Forest Stream Affected by Large-Scale Forest Dieback
    Jung, Hoseung
    Senf, Cornelius
    Beudert, Burkhard
    Krueger, Tobias
    WATER RESOURCES RESEARCH, 2021, 57 (02)
  • [32] Approximate large-scale Bayesian spatial modeling with application to quantitative magnetic resonance imaging
    Metzner, Selma
    Wuebbeler, Gerd
    Elster, Clemens
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (03) : 333 - 355
  • [33] Approximate large-scale Bayesian spatial modeling with application to quantitative magnetic resonance imaging
    Selma Metzner
    Gerd Wübbeler
    Clemens Elster
    AStA Advances in Statistical Analysis, 2019, 103 : 333 - 355
  • [34] Adaptive and Global Approaches Based Feature Selection for Large-Scale Hierarchical Text Classification
    Ado, Abubakar
    Deris, Mustafa Mat
    Samsudin, Noor Azah
    Sharifai, Abdurra'uf Garba
    ADVANCES ON INTELLIGENT INFORMATICS AND COMPUTING: HEALTH INFORMATICS, INTELLIGENT SYSTEMS, DATA SCIENCE AND SMART COMPUTING, 2022, 127 : 105 - 116
  • [35] Bayesian Optimisation of Large-Scale Biophysical Networks
    Hadida, J.
    Sotiropoulos, S. N.
    Abeysuriya, R. G.
    Woolrich, M. W.
    Jbabdi, S.
    NEUROIMAGE, 2018, 174 : 219 - 236
  • [36] Large-scale inference of conjunctive Bayesian networks
    Montazeri, Hesam
    Kuipers, Jack
    Kouyos, Roger
    Boni, Jurg
    Yerly, Sabine
    Klimkait, Thomas
    Aubert, Vincent
    Gunthard, Huldrych F.
    Beerenwinkel, Niko
    BIOINFORMATICS, 2016, 32 (17) : 727 - 735
  • [37] The large-scale structure: Bayesian analysis and beyond
    Hoffman, Y
    MINING THE SKY, 2001, : 223 - 235
  • [38] EdNet: A Large-Scale Hierarchical Dataset in Education
    Choi, Youngduck
    Lee, Youngnam
    Shin, Dongmin
    Cho, Junghyun
    Park, Seoyon
    Lee, Seewoo
    Baek, Jineon
    Bae, Chan
    Kim, Byungsoo
    Heo, Jaewe
    ARTIFICIAL INTELLIGENCE IN EDUCATION (AIED 2020), PT II, 2020, 12164 : 69 - 73
  • [39] A HIERARCHICAL STRATEGY FOR LARGE-SCALE PROCESS CALCULATIONS
    MCLANE, M
    SOOD, MK
    REKLAITIS, GV
    COMPUTERS & CHEMICAL ENGINEERING, 1979, 3 (1-4) : 383 - 394
  • [40] Hierarchical CRGK for a Large-scale User Group
    Park, Jihyun
    Yoon, Kisong
    Ryou, Jaecheol
    2009 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, 2009, : 423 - 424